Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources. The apparent temperature of each source is obtained from comparison with a thermodynamical model.
THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR.
THE NUCLEUS IS NAF. CHARGED PARTICLES IN THE CENTRAL DRIFT CHAMBER OF THE DIOGENE DETECTOR. THE EVENT SELECTION:A HEAVY FRAGMENT(Z>=6) IS REGISTRED IN THE PLASTIC WALL OF THE DIOGENE.
We have observed Σc++ and Σc0 baryons in nonresonant e+e− interactions through their decays to Λc+π± using the CLEO detector. The mass difference M(Σc++)-M(Λc+) is measured to be 167.8±0.4±0.3 MeV; for M(Σc0)-M(Λc+) we find 167.9±0.5±0.3 MeV. Σc decay accounts for (18±3±5)% of Λc+ production.
The cross section ratio is multiplied by a factor of 1.5 to account for theunobserved SIGMA/C(2455)+.
No description provided.
The cross sections of a number of target residues formed in the reactions of 3.65 A GeV 12C ions and 3.65 GeV protons with tantalum have been measured. The measurements have been done by direct counting of irradiated targets with a Ge(Li) gamma-ray spectrometer. Charge dispersions and mass-yield distributions were deduced from these data. The results are discussed in terms of the basic concepts of high-energy nuclear physics. They are also compared with intranuclear cascade and abrasion-ablation model calculations.
No description provided.
No description provided.
No description provided.
The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.
No description provided.
No description provided.
Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.
Observed production rates relative to the total hadronic cross section.
Production rates corrected for fragmentation, initial state radiation and detector effects.
We have measured dijet angular distributions at √s =1.8 TeV with the Collider Detector at Fermilab and the Tevatron p¯p Collider and find agreement with leading-order QCD. By comparing the distribution for the highest dijet invariant masses with the prediction of a model of quark compositeness, we set a lower limit on the associated scale parameter Λc at 330 GeV (95% C.L.).
Numerical values read from figure in preprint.
We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.
RATIO of MULT/DISPERSION for the whole event to that for the single hemisphere data.
Complete event multiplicities.
Single hemisphere multiplicities.
None
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGE OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 1.
NUCLEUS IS NUCLEAR PHOTOEMULSION.
The production of Λ 's and Ξ − 's in proton-antiproton collisions at 200 and 900 GeV c.m. energy has been studied using decays observed in the UA5 streamer chambers. The results are compared to previously published 546 GeV data, to results from other experiments, and to four theoretical models. The Λ yield per inelastic event is estimated to be 0.42±0.11 at 200 GeV and 0.66±0.14 at 900 GeV. We find a mean number of Ξ − 's per inelastic collision of 0.03 −0.02 +0.04 at 200 GeV and 0.06 −0.03 +0.05 at 900 GeV. The average transverse momentum of Λ's in the rapidity region | y |⩽2 is found to be 0.80 −0.14 +0.20 GeV/ c at 200 GeV and 0.74±0.09 GeV/ c at 900 GeV. The average transverse momentum of Ξ − 's in the rapidity region | y |⩽3 is estimated to be 0.8 −0.2 +0.4 GeV/ c at 200 GeV and 0.7 −0.1 +0.2 GeV/ c at 900 GeV which is lower than the unexpectedly high value of 1.1±0.2 GeV/ c measured at 546 GeV. The ratio of Ξ − production to Λ production in the region | y |⩽2, p t >1 GeV/ c is 0.07 −0.04 +0.08 at 900 GeV. This value is consistent with the ratio found in e + e − collisions and lower energy pp collisions but lower than the value obtained at 546 GeV. The average particle composition of events at 200 and 900 GeV, estimated using UA5 data, is presented.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Corrected lambda transverse momentum distributions. Numerical values supplied by F. Lotse. Data at 546 GeV are taken from an earlier publication - Phys. Rep. 154 (87) 247.
Inclusive charged particle production ine+e− annihilation into hadrons is studied in terms of the particle fractional momentumxp. Thexp distribution for gluon jets is extracted by comparing two data samples measured in the TASSO detector: nearly symmetric three jet events at centre-of-mass energyW∼35 GeV and two jet events atW∼22 GeV, yielding quark and gluon jets of similar energies (∼11.5 GeV). No significant difference is observed between quark and gluon jets. Monte Carlo models based on parton showers describe the trend and energy variation of the data better than a model with second order matrix element in αs.
2 JET data at sqrt(s) = 35 GeV.
3 JET data at sqrt(s) = 22 GeV.
Gluon jet data at sqrt(s) = 11.5 GeV.