We present the results of a search for leptons produced in coincidence with a prompt muon in neutron-beryllium collisions at 300 GeV/c. The experiment was sensitive to trigger muons and associated leptons of both low momentum and low transverse momentum. A clear μ±μ∓ signal was found, but no significant μ±e∓ signal was observed. We report an upper limit for associated charmed-particle production [σCC¯·B(C→μ+X)·B(C→e+X)] of < 340 nb/nucleon, at the 95% confidence level.
The cross section for CHARM and CHARMBNAR particle production is obtained with the assumption that BR(CHARM --> MU+ X) = 15 PCT.
None
No description provided.
No description provided.
No description provided.
We measured dσdt for p+p→p+p at 11.75 GeV/c using the zero-gradient synchrotron 70% polarized-proton beam and a 65% polarized-proton target. We obtained the spin-orbit asymmetry parameter A and the spin-spin correlation parameter Cm out to P⊥2=4.2 (GeV/c)2. We found that A drops smoothly towards zero, but that Cnn increases abruptly near P⊥2=3.6 (GeV/c)2, where the exp(−1.4P⊥2) component of elastic scattering becomes dominant. This suggests that large-P⊥2 "hard" elastic scattering may occur mostly when the two proton spins are parallel.
No description provided.
We report measurements of the polarization parameters in π+p and π−p elastic scattering at an incident momentum of 100 GeV/c. The results cover the range 0.18<~−t<~1.4 GeV2 and are in agreement with current Regge-model predictions.
No description provided.
No description provided.
No description provided.
The properties of the final-state hadronic system in antineutrino-proton charged-current interactions are presented. The events were observed in the Fermilab 15-foot hydrogen bubble chamber. The average energy of the events is ∼30 GeV, but there are some interactions beyond 100 GeV. The mean multiplicity of the charged hadrons varies as 〈nCH〉=(0.06±0.06)+(1.22±0.03)lnW2 for hadronic masses W in the range 1.0<W2<50 GeV2. By contrast, the multiplicity depends only weakly on the four-momentum transfer between the leptons. The mean pion multiplicities for events with three or more charged tracks are found to be 〈n−〉=1.64±0.04, 〈n0〉=1.16±0.13, for π− and π0 production, respectively. By comparing the number of positive tracks with π− data from neutrino production, we deduce a mean proton multiplicity 〈np〉 of 0.53 ± 0.15. The single-particle distributions in both longitudinal and transverse momentum are found to be similar to those for nondiffractive production in hadronic collisions. The fragmentation properties of the final-state d quarks are compared to the expectations of the quark-parton model. The fraction of observed neutral-strange-particle production for events with three or more charged tracks is 0.08 ± 0.015 and is consistent with coming completely from associated production.
No description provided.
No description provided.
No description provided.
This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.
Measured Quasi-Elastic total cross section.
None
SIG(C=BACKWARD) = SIG(-UP<1 GEV**2)/(1-EXP(-SLOPE)). UP DISTRIBUTION OF EVENTS HAS A PERFECT EXPONENTIAL SHAPE.
We present extracted data for the pure I = 1 π 0 Λ (1520) channel from the reaction K − p → K − p π 0 at 11 incident momenta between 0.96 and 1.355 GeV/ c (1775 to 1960 MeV c.m. energy). A partial-wave analysis of this channel has been carried out over a broad c.m. energy range from 1710 to 2170 MeV using data at 27 momenta from this and earlier experiments. The 5 2 − Σ(1775) and built7 2 + Σ(2030) resonances are found to decay strongly to this channel. Amplitudes are also obtained for less dominant and less well-established resonances.
THESE CROSS SECTIONS ARE GIVEN IN TABLE 1B OF W. CAMERON ET AL., NP B146, 327 (1978).
LEGENDRE POLYNOMIAL COEFFICIENTS FOR ANGULAR DISTRIBUTION OF CROSS SECTION.
LEGENDRE POLYNOMIAL COEFFICIENTS FOR ANGULAR DISTRIBUTION OF DENSITY MATRIX ELEMENT RHO(MM=33,XYZ=SH).
The cross sections for the line-reversed reaction pairs K+n→K0p and K−p→K¯0n, and K+p→K0Δ++ and K−n→K¯0Δ− have been determined with high statistics and good relative normalization at 8.36 and 12.8 GeV/c in a spectrometer experiment at Stanford Linear Accelerator Center. The cross sections for the K+-induced reactions are larger than for the K−, contrary to the expectations of weakly-exchange-degenerate Regge-pole models. The ratio of the reaction cross sections is about the same as at lower energies and shows little change with momentum transfer.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8<W<4.5 GeV and a virtual-photon mass-squared range 0.5≤Q2≤4.5 GeV2 indicate an overall equality of summed structure functions for neutron and proton targets, which exhibit approximate independence of Q2 and ω′, Implications in terms of quark-fragmentation ideas are discussed.
No description provided.
No description provided.
No description provided.