None
No description provided.
No description provided.
The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range (0.01< x <0.7). The spin-dependent structure function g 1 ( x ) for the proton has been determined and its integral over x found to be 0.114±0.012±0.026, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These values for the integrals of g 1 lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.
THE AVERAGE VALUES OF Q**2 IN EACH X-BIN ARE AS FOLLOWS: X=0.015,Q2=3.5: X=0.025,Q2=4.5: X=0.035,Q2=6.0: X=0.050,Q2=8.0: X=0.078,Q2=10.3: X=0.124,Q2=12.9: X=0.175,Q2=15.2: X=0.248,Q2=18.0: X=0.344,Q2=22.5: X=0.466,Q2=29.5.
Data are presented on exclusive ρ0 and ϕ production in deep inelastic muon scattering from a target consisting mainly of nitrogen. The ratio of the total cross sections for ρ0 and ϕ production is found to be 9∶(1.6±0.4) at 〈Q2〉=7.5 GeV2, consistent with theSU(3) prediction of 9∶2. Thet dependence for exclusive ρ0 production is found to become shallover asQ2 increases and, for largeQ2, thet dependence is typical of that for a hard scattering process. Furthermore, the ratio of the cross sections for coherent: incoherent production from nitrogen is found to decrease rapidly withQ2. Such behaviour indicates that even for exclusive vector meson production the virtual photon behaves predominantly as an electromagnetic probe.
No description provided.
No description provided.
No description provided.
Results are presented on the ratios of the deep inelastic muon-nucleus cross sections for carbon, copper and tin nuclei to those measured on deuterium. The data confirm that the structure functions of the nucleon measured in nuclei are different from those measured on quasi-free nucleons in deuterium. The kinematic range of the data is such that 〈 Q 2 〉 ∼ 5 GeV 2 at x ∼ 0.03, increasing to 〈 Q 2 〉 ∼ 35 GeV 2 for x ∼ 0.65. The measured cross section ratios are less than unity for x ≲ 0.05 and for 0.25 ≲ x < 0.7. The decrease of the ratio below unity for low x becomes larger as A increases as might be expected from nuclear shadowing. However, this occurs at relatively large values of Q 2 (∼ 5 GeV 2 ) indicating that such shadowing is of patrionic origin.
Q**2= 5.1,7.8,11.4,14.4,17.3,20.2,24.1,29.8,33.6 GEV**2.
Q**2= 4.4,8.4,13.5,17.9,21.1,24.4,29.5,34.0,40.4 GEV**2.
Q**2= 4.0,7.7,11.1,14.6,17.1,19.8,24.8,32.4 GEV**2.
Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003–0.1) and low Q 2 (0.3–3.2 GeV 2 ) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q 2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.
VALUES OF Q**2 AT EACH POINT ARE:- 0.52,0.60,0.61,0.61,0.63,0.68,0.90.
VALUES OF Q**2 AT EACH POINT ARE:- 1.09,1.25,1.54,1.74,1.76,1.68,1.71, 2.29.
VALUES OF X AT EACH POINT ARE:- 0.009,0.011,0.010,0.010,0.010,0.011, 0.013,0.015.
A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.
No description provided.
No description provided.
No description provided.
The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured in the range 0.01<×<0.7. The spin dependent structure function g 1 ( x ) for the proton has been determined and, combining the data with earlier SLAC measurements, its integral over x found to be 0.126±0.010(stat.)±0.015(syst.), in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Biorken sum rule, this result implies a significant negative value for the integral of g 1 for the neutron. These integrals lead to the conclusion, in the naïve quark parton model, that the total quark spin constitutes a rather small fraction of the spin of the nucleon. Results are also presented on the asymmetries in inclusive hadron production which are consistent with the above picture.
THE MEAN Q**2 FOR EACH OF THE 10 VALUES OF X BELOW ARE 3.5,4.5,6.0, 8.010.3,12.9,15.2,18.0,22.5,29.5.
No description provided.
No description provided.
Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F 2 extracted from deuterium does not show a significant x dependence in the measured range of Q 2 and its Q 2 dependence is linear in log Q 2 . For calcium, a depletion of F 2 is observed at low x by 30% as compared with the values at x = 0.1 where F 2 (Ca) and F 2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q 2 . The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q 2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
Deuterium data. Overall normalization error of 7 pct not included.
The ratio of the structure function F 2 n / F 2 p ( x ) has been measured in deep inelastic scattering of 274 GeV muons on hydrogen and deuterium targets exposed simultaneously to the beam. The results were obtained from 0.3 (0.6) million events from hydrogen (deuterium) in the range 0.004 < x < 0.8 and 1 < Q 2 < 190 GeV 2 . At x < 0.25 both the statistical and the systematic error is below 2%. Implications for parton distributions and for the σ w / σ z production cross section ratio in p p collisions are discussed. When compared to other results obtained at lower energies, the data indicate a Q 2 dependence of the ratio.
No description provided.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.
No description provided.