We present results on charged multiplicity nch=2 and nch>2 muon events produced in e+e− collisions with 〈s12〉=7.3 GeV at 90° to the beams. The background-subtracted inclusive cross section for the nch=2 events is 10.2±5.4 pb/sr, in agreement with the expected contribution from the heavy lepton τ. The cross section for the nch>2 events is 19.0±6.5 pb/sr whereas we expect only 2.9 pb/sr from the τ, indicating that we may be seeing the weak decays of charmed mesons.
No description provided.
No description provided.
The cross section for production of ρ0 mesons has been measured in the reaction e+p→e+p+π++π−. The cross section is presented as a function of W, the c.m. energy of the virtual-photon-proton system, and -Q2, the square of the virtual-photon mass. The vector-dominance model is not able to describe the dependence of the cross section on the parameters Q2 and W. The slope parameter B describing the scattering of the proton exhibits a significant variation with Q2.
No description provided.
The production of the ω meson by virtual photons has been measured as a function of Q2 and W. The ratio of ω production to ρ0 production is independent of Q2 in contrast to indications at lower values of W.
No description provided.
New data on differential cross sections and polarisation are presented at nine incident momenta up to 1334 MeV/ c . An energy-dependent phase-shift analysis has been made and resonance parameters are given.
No description provided.
No description provided.
No description provided.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
No description provided.
No description provided.
We report on inclusive hadron production in e+e− annihilation at 〈s〉=53 GeV2, using a small solid-angle magnetic spectrometer with good particle identification at 90° to the beams at SPEAR II. The cross sections of π± and K± when compared with data at s=23 GeV2 exhibit scaling in (sβ)dσdx with x=2Es12. The invariant cross section depends on the momentum as p−4.
No description provided.
No description provided.
No description provided.
We have observed the D(1285), E(1420) and δ(975) mesons produced in 12 and 15 GeV/ c π − p interactions at the CERN Omega Spectrometer. Production cross sections and decay branching ratios are presented. Analysis of the decay D(1285) → δ (975) π favours a spin-parity assignment of 1 + .
No description provided.
CORRECTED FOR DECAY MODES OTHER THAN <ETA PI+ PI-> AND FOR THE UNOBSERVED PARTS OF THE T-DISTRIBUTION.
No description provided.
New data are presented on the differential cross section and polarisation for the reaction π − p → K 0 Σ 0 at six incident momenta from threshold up to 1334 MeV/ c .
No description provided.
No description provided.
No description provided.
Inclusive momentum and energy spectra of neutral and charged D-mesons produced in e + e − annihilation at energies near 7 GeV are presented. The slope of the energy spectrum is similar to the charged pion spectrum at the same energy. The inclusive cross section σ(e + e − → D or D + anything) at 7 GeV is 4.8±1.3 nb.
No description provided.
No description provided.
SCALING VARIABLE IS X(P=3,DEF=2*E(P=3)/SQRT(S)) > 0.54.
We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.
No description provided.
No description provided.
No description provided.