Inclusive-jet cross sections in NC DIS at HERA and a comparison of the kT, anti-kT and SIScone jet algorithms

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Phys.Lett.B 691 (2010) 127-137, 2010.
Inspire Record 848883 DOI 10.17182/hepdata.55309

For the first time, differential inclusive-jet cross sections have been measured in neutral current deep inelastic ep scattering using the anti-kT and SIScone algorithms. The measurements were made for boson virtualities Q^2 > 125 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb^-1 and the jets were identified in the Breit frame. The performance and suitability of the jet algorithms for their use in hadron-like reactions were investigated by comparing the measurements to those performed with the kT algorithm. Next-to-leading-order QCD calculations give a good description of the measurements. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas^3) terms. Values of alphas(Mz) were extracted from the data; the results are compatible with and have similar precision to the value extracted from the kT analysis.

16 data tables

Measured differential cross section DSIG/DE for inclusive jet production using the anti-KT jet algorithm.

Measured differential cross section DSIG/DE for inclusive jet production using the SIScone jet algorithm.

The measured differential cross section DSIG/DQ**2 for inclusive jet production using the anti-KT jet algorithm.

More…

Forward-jet production in deep inelastic ep scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 52 (2007) 515-530, 2007.
Inspire Record 756364 DOI 10.17182/hepdata.45524

Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.

14 data tables

Differential cross section DSIG/DQ**2 in bins of Q**2 .

Differential cross section DSIG/DX in bins of X .

Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .

More…

Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Phys.Lett.B 649 (2007) 12-24, 2007.
Inspire Record 736199 DOI 10.17182/hepdata.45795

Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q^2 > 125 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb^-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q^2 and the jet transverse energy, E_T,B^jet. The dependence on R of the inclusive-jet cross section has been measured for Q^2 > 125 and 500 GeV^2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 <= R <= 1. A value of alpha_s(M_Z) has been extracted from the measurements of the inclusive-jet cross-section dsigma/dQ^2 with R=1 for Q^2 > 500 GeV^2: alpha_s(M_Z) = 0.1207 +- 0.0014 (stat.) -0.0033 +0.0035 (exp.) -0.0023 +0.0022 (th.). The variation of alpha_s with E_T,B^jet is in good agreement with the running of alpha_s as predicted by QCD.

9 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 765 (2007) 1-30, 2007.
Inspire Record 724050 DOI 10.17182/hepdata.45641

Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q2 > 125 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. Jets were identified in the Breit frame using the kt cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q2. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions.

17 data tables

Dijet cross section as a function of Q**2 in the Breit frame.

Dijet cross section as a function of Bjorken X in the Breit frame.

Dijet cross section as a function of the mean ET of the jets in the Breit frame.

More…

Measurement of inclusive jet cross-sections in deep-inelastic e p scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 542 (2002) 193-206, 2002.
Inspire Record 588263 DOI 10.17182/hepdata.46544

A measurement of inclusive jet cross-sections in deep-inelastic ep scattering at HERA is presented based on data with an integrated luminosity of 21.1 pb^-1. The measurement is performed for photon virtualities Q^2 between 5 and 100 GeV^2, differentially in Q^2, in the jet transverse energy E_T, in E_T^2/Q^2 and in the pseudorapidity eta_lab. With the renormalization scale mu_R = E_T, perturbative QCD calculations in next-to-leading order (NLO) give a good description of the data in most of the phase space. Significant discrepancies are observed only for jets in the proton beam direction with E_T below 20 GeV and Q^2 below 20 GeV^2. This corresponds to the region in which NLO corrections are largest and further improvement of the calculations is thus of particular interest.

5 data tables

Inclusive jet cross sections DSIG/DET(JET) as a function of ET(JET) in three pseudorapidity ranges.

Inclusive jet cross sections DSIG/DET(JET) as a function of ET(JET) in five Q**2 ranges for the forward pseudorapidity range 1.5 to 2.8.

Inclusive jet cross section DSIG/D(ET**2/Q**2) in the pseudorapidity range -1.0 to 0.5.

More…

Dijet production in charged and neutral current e+ p interactions at high Q**2.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 429-440, 2001.
Inspire Record 534736 DOI 10.17182/hepdata.46947

Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

9 data tables

Rates of charged current events as a function of Q**2.

Rates of neutral current events as a function of Q**2.

Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.

More…

Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

2 data tables

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.

Measured forward-jet x distribution.


Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Forward jet production in deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 239-252, 1999.
Inspire Record 470499 DOI 10.17182/hepdata.44288

The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.

1 data table

The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.


Measurement of jet shapes in high Q**2 deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 8 (1999) 367-380, 1999.
Inspire Record 468803 DOI 10.17182/hepdata.44312

The shapes of jets with transverse energies, E_T(jet), up to 45 GeV produced in neutral- and charged-current deep inelastic e+p scattering (DIS) at Q**2 > 100 GeV**2 have been measured with the ZEUS detector at HERA. Jets are identified using a cone algorithm in the eta-phi plane with a cone radius of one unit. The jets become narrower as E_T(jet) increases. The jet shapes in neutral- and charged-current DIS are found to be very similar. The jets in neutral-current DIS are narrower than those in resolved processes in photoproduction and closer to those in direct-photon processes for the same ranges in E_T(jet) and jet pseudorapidity. The jet shapes in DIS are observed to be similar to those in e+e- interactions and narrower than those in pbarp collisions for comparable E_T(jet). Since the jets in e+e- interactions and e+p DIS are predominantly quark initiated in both cases, the similarity in the jet shapes indicates that the pattern of QCD radiation within a quark jet is to a large extent independent of the hard scattering process in these reactions.

24 data tables

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

Measured differential jet shapes, corrected to the hadron level, in neutral-current DIS for jets with ET greater than 14 GeV in different etarap regions.

More…