Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
JHEP 09 (2012) 061, 2012.
Inspire Record 1120512 DOI 10.17182/hepdata.64899

Inclusive e\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

1 data table match query

The Charged Current Double Differential Cross Section for E+ P interactions with a beam polarisation of -37.0 % for Q^2 values of 5000, 8000, 15000, and GeV^2.


Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

The H1 & ZEUS collaborations Aaron, F.D. ; Abramowicz, H. ; Abt, I. ; et al.
JHEP 01 (2010) 109, 2010.
Inspire Record 836107 DOI 10.17182/hepdata.58304

A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

2 data tables match query

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=12. GeV**2.

Combined reduced cross section data and F2 for Neutral Current E+ P scattering at Q**2=22. GeV**2.


Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 713 (2005) 3-80, 2005.
Inspire Record 675372 DOI 10.17182/hepdata.11816

Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

1 data table match query

Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 3.0 GeV and Q**2 = 2.7 GeV**2.


Measurement of high-Q**2 e- p neutral current cross sections at HERA and the extraction of xF3.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 28 (2003) 175-201, 2003.
Inspire Record 593481 DOI 10.17182/hepdata.46560

Cross sections for e^-p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of 318 GeV using an integrated luminosity of 15.9 pb^-1 collected with the ZEUS detector at HERA. Results on the double-differential cross-section d^2s/dxdQ^2 in the range 185 < Q^2 < 50000 GeV^2 and 0.0037 < x < 0.75, as well as the single-differential cross-sections ds/dQ^2, ds/dx and ds/dy for Q^2 > 200 GeV^2, are presented. To study the effect of Z-boson exchange, ds/dx has also been measured for Q^2 > 10000 GeV^2. The structure function xF_3 has been extracted by combining the e^-p results presented here with the recent ZEUS measurements of e^+p neutral current deep inelastic scattering. All results agree well with the predictions of the Standard Model.

1 data table match query

Details of the systematic uncertainties in the reduced cross section measurement.