Absolute cross sections for Compton scattering from protons have been determined at 180° for the backscattered photon at incident laboratory photon energies of 98 and 132 MeV. For the difference between the electric and the magnetic polarizability of the proton a value of (7.03 − 2.37 +2.49 − 2.05 +2.14 ) × 10 −4 fm 3 has been derived using the predictions from calculations based on relativistic dispersion relations.
No description provided.
We have measured the K + K - /π + π - ratio R from p annihilations in gaseous D 2 and H 2 at atmospheric pressure. The measurement was performed with the OBELIX spectrometer. From the measured value in gaseous D 2 (0.27±0.02) we infer a P wave contribution to p −p annihilation in D 2 of (18±7)%.
Two different triggers were used.
Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
Xenon structure function parameterized as being equal to the DEUT structurefunction.
Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.
The polarization of the proton from the inclusive breakup reaction 1 H( d , p )X at 2.1 GeV was measured at 0°. The results are expressed as the ratio of the proton polarization, P p , to the deuteron beam polarization, P d , κ 0 = P p / P d . The measured values of κ 0 range from +0.983 to -0.305 and are in general agreement with the expected behavior arising from the D state in the deuteron wave function.
POL(C=DEUT) is the DEUT polarization, the P(P=3,RF=ANTILAB) is the proton momentum in DEUT rest frame.
Enhanced strange particle production, nonstatistical multiplicity fluctuations and two-pion Bose-Einstein correlations were measured in O, S-nucleus reactions at 60 and 200 GeV/nucleon. The results indicate significant collective effects in high-energy nucleus-nucleus collisions.
CENTRAL COLLISIONS.
CENTRAL COLLISIONS.
Product of charged kaons in central S + S and O + Au collisions at 200 GeV/nucleon has been studied in the NA 35 Streamer Chamber experiment. Mean multiplicities and transverse mass distributions were obtained. They were compared with nucleon-nucleon data and with model predictions.
No description provided.
No description provided.
No description provided.
We present an analysis of 800-GeV proton-induced Drell-Yan production data from isoscalar targets 2H and C, and from W, which has a large neutron excess. The ratio of cross sections per nucleon, R-σW/σIS, is sensitive to the difference between the d¯(x) and u¯(x) structure functions of the proton. We find that R is close to unity in the range 0.04≤x≤0.27, allowing upper limits to be set on the d¯-u¯ asymmetry. Additionally, the shape of the differential cross section m3 d2σ/dxF dm for 2H at xF≊0 shows no evidence of an asymmetric sea in the proton. We examine the implications of these data for various models of the violation of the Gottfried sum rule in deep-inelastic lepton scattering.
Upper limit at the 2sigma statistical error level. Mass of MU+ MU- in GeV.
Angular and momentum distributions have been measured for positrons from electron-positron pairs created in peripheral collisions of 6.4-TeV sulfur ions with fixed targets of Al, Pd, and Au. The data are compared with results of several theoretical treatments. Measured differential cross sections peak at low momentum (≤1 MeV/c), extend significantly to much higher momenta (>17 MeV/c), and concentrate sharply in the forward direction, along the ion-beam axis. Positron yields scale as the square of the target nuclear charge as predicted by theory.
No description provided.
With 4.36×106 events, spin precession in a magnetic field has been used to measure the magnetic moment of the Ξ− hyperon as -0.6505±0.0025 nuclear magnetons.
No description provided.
This letter reports the full reconstruction of B mesons through the decay chain B±→J/ψ K±, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in p¯p collisions at √s =1.8 TeV. This exclusive sample, the first observed at a hadron collider, is then used to measure the B-meson cross section, from which we extract the b-quark cross section. We obtain σ=2.8±0.9 (stat) ±1.1(syst) μb for B− mesons with PT>9.0 GeV/c and rapidity ‖y‖<1.0. We obtain σ=6.1±1.9(stat) ±2.4(syst) μb, for b quarks with transverse momentum PT>11.5 GeV/c and rapidity ‖y‖<1.0.
B-meson cross section.
B-quark cross section.