The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.
No description provided.
In diffractive photoproduction ofηπ+π−, the two-body substatesηρ0 andA2π are found to contribute significantly to the cross-section forηπ+π− masses below 2.4 GeV. From a spin-parity analysis the branching ratio, ρ′(1600)→ηρ/ρ′(1600)→, is determined to be <0.02 at the 68.3% confidence level. TheA2π component shows an enhancement around 1.7 GeV. The spin-parity analysis indicates a probable contribution to this signal from exclusive photoproduction of theg(1690).
No description provided.
Not corrected for 35% background under the eta --> gamma gamma peak.
Not corrected for 35% background under the ETA --> GAMMA GAMMA peak.
Polarization and differential cross-section data at 16 momenta between 0.86 and 2.74 GeV/ c are presented. (Preliminary data on some of the momenta have been published earlier.) In an energy-independent phase-shift analysis from threshold up to 2.5 GeV/ c , resonant-like as well as non-resonant solutions are found for the P 3 wave. An helicity flip-non-flip decomposition of the partial waves partly supports the indications found in the analyses of other reactions that the pomeron is built up mainly from s -channel helicity non-flip contributions.
No description provided.
No description provided.
No description provided.
Elastic and charge-exchange K + n differential cross sections have been measured from K + d interactions from 430 to 940 MeV/ c using spark chambers and scintillation counters. The data have been compared with existing results and in an accompanying paper have been included with other measurements in a phase-shift analysis.
NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.
NOTE COHERENT ELASTIC SCATTERING ON DEUTERIUM AT FORWARD ANGLES (-T < 0.13 GEV**2) REDUCES THE CROSS SECTION COMPARED WITH FREE NUCLEON ELASTIC SCATTERING.
SUM OF BREAK-UP AND COHERENT ELASTIC REACTIONS.
Polarization and differential cross-section data at 0.86, 0.97, 1.09, 1.37 and 1.45 GeV c are presented. An energy-independent phase-shift analysis from threshold up to 1.45 GeV c using random searches at 19 momenta and the shortest path method to link solutions at different momenta, yields three solutions. One of these is unlikely; the other two coincide up to 0.86 GeV c , and both show an anticlockwise half-circle in the P 3 -wave.
No description provided.
Measurements of proton-proton elastic scattering at angles around 6 mrad have been made at centre-of-mass energies of 23, 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The absolute scale of the cross-section was established by determination of the effective density of the colliding beans in their overlap region. Proton-proton total cross sections were deduced by extrapolation of the elastic differential cross-section to the forward direction and by application of the optical theorem. The results indicate that over the energy range studied the proton-proton total cross-section increases from about 39 to about 43 mb.
No description provided.
NEW VALUES OF ELASTIC SLOPE USING APPARATUS DESCRIBED IN U. AMALDI ET AL., PL 43B, 231 (1973).
Angular distributions of proton-proton elastic scattering have been measured for incident beam momenta of 10.0, 12.0, 14.2 and 24.0 GeV/ c over a range of lab scattering angles from 12 to 152 mrad. This is equivalent to a range of four-momentum transfer squared from about 0.1 to 6.7 GeV 2 at the highest momentum. Nucleon resonance production in the two-body reaction p + p → p + X has been studied at 24.0 GeV/ c incident momentum from 13.5 to 112 mrad by measuring the proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV. The new data are compared with previous results and theoretical models.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
ESTIMATED 8 PCT RANDOM ERROR.
Proton-proton elastic scattering has been measured at the CERN Intersecting Storage Rings in the four-momentum transfer range 0.001 ⩽… t …⩽ 0.015 GeV 2 at centre-of-mass energies of 23 and 31 GeV. The detection of Coulomb scattering and of its interference with nuclear scattering leads to the determination of the real part of the nuclear amplitude and of the total proton-proton cross section by the optical theorem.
No description provided.
We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
We report the results of a pion-electron scattering experiment to measure the charge radius of the pion. The experiment was performed in a 50 GeV/ c negative, unseparated beam at the IHEP accelerator, Serpukhov, and has been briefly reported in an earlier publication [1]. A magnetic spectrometer instrumented with wire spark chambers was used to record the incident pion trajectory and the angles and momenta of the scattered particles. Events are reconstructed by detailed trackfinding programs, and a set of kinematic and geometric cuts define the elastic sample. Electrons are identified both by kinematic criteria and pulse height information from total absorption lead glass Čerenkov counters. The final elastic sample consisted of 40 000 πe events in the region of four-momentum transfer squared 0.013 (GeV/ c ) 2 ⩽ q 2 ⩽ 0.036 (GeV/ c ) 2 . A full error matrix fit to the form factors of the pion gave the r.m.s. charge radius of the pion: 〈r π 2 〉 1 2 = (0.78 −0.10 +0.09 ) fm .
Axis error includes +- 0.7/0.7 contribution (DUE TO ACCIDENTAL ANTI-COINCIDENCES).
No description provided.
No description provided.