Showing 2 of 2 results
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
Measurements of the double-differential proton production cross-section in the range of momentum 0.5 GeV/c < p < 8.0 GeV/c and angle 0.05 rad < \theta < 0.25 rad in collisions of charged pions and protons on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors and impinged on a target of 5 % of a nuclear interaction length. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP experiment. Results are obtained for the double-differential cross-sections mainly at four incident beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). Measurements are compared with predictions of the GEANT4 and MARS Monte Carlo generators.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Beryllium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Carbon target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Aluminium target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Copper target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tin target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Tantallum target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a negative pion beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a positive pion beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.050 to 0.100 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.100 to 0.150 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.150 to 0.200 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
Differential cross section for proton production with a proton beam and Lead target in the angular range 0.200 to 0.250 radians. The errors are the square-root of the diagonal elements of the covariant matrix.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.