Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-070, 2024.
Inspire Record 2773613 DOI 10.17182/hepdata.150998

A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.

53 data tables

Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.

Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.

Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.

More…

Searches for exclusive Higgs boson decays into $D^*\gamma$ and $Z$ boson decays into $D^0\gamma$ and $K^0_s\gamma$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-037, 2024.
Inspire Record 2763131 DOI 10.17182/hepdata.147194

Searches for the exclusive decays of the Higgs boson into $D^*\gamma$ and of the $Z$ boson into $D^0\gamma$ and $K^0_s\gamma$ can probe flavour-violating Higgs and $Z$ boson couplings to light quarks. Searches for these decays are performed with a $pp$ collision data sample corresponding to an integrated luminosity of $136.3$ fb$^{-1}$ collected at $\sqrt{s}=13$ TeV between 2016-2018 with the ATLAS detector at the CERN Large Hadron Collider. In the $D^*\gamma$ and $D^0\gamma$ channels, the observed (expected) 95$\%$ confidence-level upper limits on the respective branching fractions are ${\cal B}(H\rightarrow D^*\gamma)< 1.0 (1.2)\times 10^{-3}$, ${\cal B}(Z\rightarrow D^0\gamma)< 4.0 (3.4)\times 10^{-6}$, while the corresponding results in the $K^0_s\gamma$ channel are ${\cal B}(Z\rightarrow K^0_s\gamma)< 3.1 (3.0)\times 10^{-6}$.

2 data tables

Numbers of observed and expected background events for the $m_{\mathcal{M}\gamma}$ ranges of interest. Each expected background and the corresponding uncertainty is obtained by integrating the total pdf after a background-only fit to the data, where the uncertainty does not take into account statistical fluctuations in each mass range. Expected Higgs and $Z$ boson signal contributions, with their corresponding total systematic uncertainty, are shown for reference branching fractions of $10^{-3}$ and $10^{-6}$, respectively. Entries are marked with a dash when there is no signal of that type in the specified range.

Observed and expected (with the corresponding $\pm1\sigma$ intervals) 95% CL upper limits on the branching fractions for $H\rightarrow D^*\gamma$, $Z\rightarrow D^0\gamma$ and $Z\rightarrow K^0_s\gamma$. Standard Model production of the Higgs boson is assumed. The corresponding upper limits on the production cross-section times branching fraction $\sigma\times\mathcal{B}$ are also shown.


Search for a new $Z'$ gauge boson via the $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$ process in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-042, 2024.
Inspire Record 2761384 DOI 10.17182/hepdata.149991

A search for a new $Z'$ gauge boson predicted by $L_{\mu}-L_{\tau}$ models, based on charged-current Drell-Yan production, $pp \rightarrow W^{\pm(*)} \rightarrow Z' \mu^{\pm} \nu \rightarrow \mu^{\pm}\mu^{\mp}\mu^{\pm}\nu$, is presented. The data sample used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the Large Hadron Collider. The search examines a final state of $3\mu$ plus large missing transverse momentum. Upper limits are set on the $Z'$ production cross-section times branching ratio in the mass range of 5-81 GeV. After combining with the previous $Z'$ search using the neutral-current Drell-Yan production with a $4\mu$ final state, the most stringent exclusion limits to date are achieved in the parameter space of the $Z'$ coupling strength and mass.

4 data tables

Observed and expected upper limits at 95% CL on the production cross-section times branching fraction of the process $pp\to W\to Z^{\prime}$ $\mu \nu \to \mu \mu \mu \nu$ as a function of $m_{Z^{\prime}}$.

Observed and expected upper limits at 95% CL on the coupling parameter $g_{Z^{\prime}}$ as a function of $m_{Z^{\prime}}$ from the statistical combination of the $3\mu$ and $4\mu$ channels.

Exclusion contour compared to the limits from the Neutrino Trident and the $B_{S}$ mixing experimental results.

More…

Search for nearly mass-degenerate higgsinos using low-momentum mildly-displaced tracks in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2024-012, 2024.
Inspire Record 2751400 DOI 10.17182/hepdata.146944

Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass-splitting is $\mathcal{O}$(1 GeV). This Letter presents a novel search for nearly mass-degenerate higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass-splittings between the lightest charged and neutral higgsinos from 0.3 GeV to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the higgsino mass.

31 data tables

Number of expected and observed data events in the SR (top), and the model-independent upper limits obtained from their consistency (bottom). The symbol $\tau_{\ell}$ ($\tau_{h}$) refers to fully-leptonic (hadron-involved) tau decays. The Others category includes contributions from minor background processes including $t\bar{t}$, single-top and diboson. The individual uncertainties can be correlated and do not necessarily sum up in quadrature to the total uncertainty. The bottom section shows the observed 95% CL upper limits on the visible cross-section ($\langle\epsilon\sigma\rangle_{\mathrm{obs}}^{95}$), on the number of generic signal events ($S_{\mathrm{obs}}^{95}$) as well as the expected limit ($S_{\mathrm{exp}}^{95}$) given the expected number (and $\pm 1\sigma$ deviations from the expectation) of background events.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the higgsino simplified model being considered. These are shown with $\pm 1\sigma_{\mathrm{exp}}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm 1\sigma_{\mathrm{theory}}^{\mathrm{SUSY}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the latest ATLAS searches using the soft lepton and disappearing track signatures are illustrated by the blue and green regions, respectively, while the limit imposed by the LEP experiments is shown in gray. The dot-dashed gray line indicates the predicted mass-splitting for the pure higgsino scenario.

More…

Search for heavy resonances in final states with four leptons and missing transverse momentum or jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2023-291, 2024.
Inspire Record 2745376 DOI 10.17182/hepdata.145687

A search for a new heavy boson produced via gluon-fusion in the four-lepton channel with missing transverse momentum or jets is performed. The search uses proton-proton collision data equivalent to an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected by the ATLAS detector between 2015 and 2018 at the Large Hadron Collider. This study explores the decays of heavy bosons: $R\rightarrow SH$ and $A\rightarrow ZH$, where $R$ is a CP-even boson, $A$ is a CP-odd boson, $H$ is a CP-even boson, and $S$ is considered to decay into invisible particles that are candidates for dark matter. In these processes, $S\rightarrow \textrm{invisible}$ and $H\rightarrow ZZ$. The $Z$ boson associated with the heavy scalar boson $H$ decays into all decay channels of the $Z$ boson. The mass range under consideration is 390-1300 (320-1300) GeV for the $R$ ($A$) boson and 220-1000 GeV for the $H$ boson. No significant deviation from the Standard Model backgrounds is observed. The results are interpreted as upper limits at a 95% confidence level on the cross-section times the branching ratio of the heavy resonances.

19 data tables

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR1 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR2 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

Observed and expected distributions of the invariant mass of the four-lepton system in the $R\to SH\to 4\ell+E^{\textrm{miss}}_{\textrm{T}}$ search for SR3 under a background-only fit to data. The total background includes the $q\overline{q}\to ZZ$, $gg\to ZZ$, $q\overline{q}\to ZZ$ (EW), $VVV$, $t\overline{t}V$, $t\overline{t}$, $Z$+jets and $WZ$ processes. The distribution of the $(m_{R}, m_{H}) = (500, 300)$ GeV signal is normalised to the observed upper limit on the cross-section (25.0 fb).

More…

Combination of searches for resonant Higgs boson pair production using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2023-271, 2023.
Inspire Record 2726938 DOI 10.17182/hepdata.145876

A combination of searches for resonant Higgs boson pair production is presented, using up to 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: $b\bar{b}b\bar{b}$, $bb\tau^+\tau^-$ and $bb\gamma\gamma$. No excess above the expected background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV. The observed (expected) limits are in the range 0.96-600 fb (1.2-390 fb). The limits are interpreted in the Type-I Two-Higgs-Doublet Model and the Minimimal Supersymmetric Standard Model, and constrain parameter space not previously excluded by other searches.

3 data tables

Local p-value as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.

Observed significance as a function of the resonance $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.

Observed and expected upper limits at the 95% CL on the resonant Higgs boson pair production cross section as a function of the resonance mass $m_{X}$. Some table entries are empty because resonance masses from 251 GeV to 5 TeV are considered, whereas some channels only use masses in a certain, more restricted, range.


Charged-particle production as a function of the relative transverse activity classifier in pp, p$-$Pb, and Pb$-$Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 01 (2024) 199, 2024.
Inspire Record 2709103 DOI 10.17182/hepdata.146104

Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8<p_{\mathrm{T}}^{\rm trig}<15$ GeV$/c$. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, $R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$, is used to group events according to their UE activity, where $N_{\mathrm{ch}}^{\mathrm{T}}$ is the charged-particle multiplicity per event in the transverse region and $\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle$ is the mean value over the whole analysed sample. The energy dependence of the $R_{\mathrm{T}}$ distributions in pp collisions at $\sqrt{s}=2.76$, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle $p_{\rm T}$ spectra as a function of $R_{\mathrm{T}}$ in the three azimuthal regions in pp, p$-$Pb, and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p$-$Pb).

28 data tables

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=2.76~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$

$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$

More…

Femtoscopic correlations of identical charged pions and kaons in pp collisions at $\sqrt{s}=13$ TeV with event-shape selection

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 109 (2024) 024915, 2024.
Inspire Record 2709104 DOI 10.17182/hepdata.146805

Collective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE collaboration on charged pion and kaon pairs produced in pp collisions at $\sqrt{s}=13$ TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied.

74 data tables
More…

System size dependence of hadronic rescattering effect at LHC energies

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2023-175, 2023.
Inspire Record 2691823 DOI 10.17182/hepdata.146076

The first measurements of $\mathrm{K^{*}(892)^{0}}$ resonance production as a function of charged-particle multiplicity in Xe$-$Xe collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.44 TeV and pp collisions at $\sqrt{s}=$ 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity ($|y|< 0.5$) using the hadronic decay channel $\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}$. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of $\mathrm{K^{*0}}$, and yield ratios of resonance to stable hadron ($\mathrm{K^{*0}}$/K) are compared across different collision systems (pp, p$-$Pb, Xe$-$Xe, and Pb$-$Pb) at similar collision energies to investigate how the production of $\mathrm{K^{*0}}$ resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of $\mathrm{K^{*0}}$ in Xe$-$Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model.

27 data tables

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 0-1\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 1-5\% multiplicity class.

$p_{\rm T}$-distributions of $\rm{K}^{*}$ (average of particle and anti-particle) meson measured in pp collisions at \sqrt{s}$ = 5.02 TeV for 5-10\% multiplicity class.

More…

Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 12 (2023) 067, 2023.
Inspire Record 2692198 DOI 10.17182/hepdata.145839

The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope $r_{3}^{\rm Norm}$ is found to be larger than zero and to have a magnitude similar to $r_{2}^{\rm Norm}$, thus pointing to a large background contribution for these measurements. Furthermore, $r_{2}^{\rm Norm}$ can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW ($f_{\rm CMW}$) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for $f_{\rm CMW}$, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.

15 data tables

Normalized $\Delta\it{v}_{2}$ slope of charged hadrons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Normalized $\Delta\it{v}_{2}$ slope of kaons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Normalized $\Delta\it{v}_{2}$ slope of pions as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

More…