A Measurement of Muon Pair Production in $e^+ e^-$ Annihilation at Center-of-mass Energies 35-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 40 (1988) 163-170, 1988.
Inspire Record 261668 DOI 10.17182/hepdata.1897

The reactione+e−→µ+µ− has been studied at centre of mass energies between 35.0 and 46.8 GeV using the TASSO detector at PETRA. We present measurements of the forward-backward charge asymmetry (Aμμ) and cross section σμμ for this reaction at three energies. At 35.0 GeV we obtain a cross section relative to the QED prediction ofRμμ=σμμ/σo=0.932±0.018±0.044 andAμμ=(−10.6−2.3+2.2±0.5)%. At 38.3 GeV we findRμμ=0.951±0.072−0.057+0.063 andAμμ=(+1.7−8.6+8.5±0.5)%. At 43.6 GeV we measureRμμ=0.921±0.037±0.055 andAμμ=(−17.6−4.3+4.4±0.5)%. Our results are in good agreement with the predictions of the standard model. Including previous TASSO data we present improved determinations of muonic electroweak parameters. We also report on lower limits of possible contributions from contact interactions.

8 data tables

If only one error is given, this is the sum of the statistical and systematic errors in quadrature.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

The data are corrected for 'reduced QED' radiative corrections. Statistical errors only.

More…

An Improved Measurement of Electroweak Couplings From $e^+ e^- \to e^+ e^-$ and $e^+ e^- \to \mu^+ \mu^-$

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Z.Phys.C 22 (1984) 13, 1984.
Inspire Record 193787 DOI 10.17182/hepdata.2111

We present an analysis of electroweak leptonic couplings from high statistics experiments on Bhabha scattering and μ pair production at an energy of 34.5 GeV. The forward-backward charge asymmetry of the μ pairs was measured to be −0.098±0.023±0.005. The data were found to agree well with the standard theory of electroweak interaction giving sin2θW=0.27±0.07. The leptonic weak couplings were determined to begv=0.000±0.170 andgA=−0.481±0.055. The data were also used to investigate a class of composite models for leptons.

2 data tables

No description provided.

No description provided.


Analysis of Z0 couplings to charged leptons

The OPAL collaboration Akrawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 247 (1990) 458-472, 1990.
Inspire Record 297139 DOI 10.17182/hepdata.29630

The couplings of the Z 0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at centre of mass energies near to the mass of the Z 0 . The data are consistent with lepton universality. Using a parametrisation of the lepton pair differential cross section which assumes that the Z 0 has only vector and axial couplings to leptons, the charged leptonic partial decay width of the Z 0 is determined to be Г ol+ol− = 83.1±1.9 MeV and the square of the product of the effective axial vector and vector coupling constants of the Z 0 to charged leptons to be a ̌ 2 ol v ̌ 2 ol = 0.0039± 0.0083 , in agreement with the standard model. A parametrisation in the form of the improved Born approximation gives effective leptonic axial vector and vector coupling constants a ̌ 2 ol = 0.998±0.024 and v ̌ 2 ol = 0.0044±0.0083 . In the framework of the standard model, the values of the parameters ϱ z and sin 2 θ w are found to be 0.998±0.024 and 0.233 +0.045 −0.012 respectively. Using the relationship in the minimal standard model between ϱ z and sin 2 θ w , the results sin 2 θ SM w = 0.233 +0.007 −0.006 is obtained. Our previously published measurement of the ratio of the hadronic to the leptonic partial width of the Z 0 is update: R z = 21.72 +0.71 −0.65 .

6 data tables

Cross sections corrected for the effects of efficiency and kinematic cuts. Errors have systematic effects folded.

Acceptance corrected cross sections. Statistical errors only.

Acceptance corrected cross sections. Statistical errors only.

More…

A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


Observation of a Charge Asymmetry in $e^+ e^- \to \mu^+ \mu^-$

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 108 (1982) 140-144, 1982.
Inspire Record 168234 DOI 10.17182/hepdata.31023

The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.

5 data tables

Best fit to total cross section in energy range.

ANGULAR DISTRIBUTION.

Forward-backward asymmetry within the acceptnce region.

More…

Experimental limits on extra Z bosons from e+ e- annihilation data with the VENUS detector at s**(1/2) = 50-GeV to approximately 64-GeV

The VENUS collaboration Abe, K. ; Amako, K. ; Arai, Y. ; et al.
Phys.Lett.B 246 (1990) 297-305, 1990.
Inspire Record 296392 DOI 10.17182/hepdata.29664

We have tested extra Z models in the reactions e + e − → μ + μ − , τ + τ − and hadrons in the energy range 50< s <64 GeV using the VENUS detector at the TRISTAN e + e − storage ring. Our data are in good agreement with the standard model prediction ( χ 2 N Df = 2.9 31 ) ). We have obtained 90% confidence-level lower limits of 105, 125 and 231 GeV for the masses of Z Ψ , Z η and Z χ bosons which are expected from the E 6 grand unified theory. We also place a 90% confidence-level lower limit of 426 GeV for the mass of an extra-Z boson whose couplings to quarks and leptons are assumed to be the same as those for the standard Z boson. Our results exceed the previous experimental limits from the p p collider experiments, although there have been some combined analyses reporting the limits better than those obtained in the present analysis.

5 data tables

New measurements.

New measurements. Statistical and systematic errors combined in quadrature.

New measurements.

More…

A MEASUREMENT OF THE Z0 LEPTONIC PARTIAL WIDTHS AND THE FORWARD - BACKWARD ASYMMETRY

The L3 collaboration Adeva, B. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
L3-005, 1990.
Inspire Record 294576 DOI 10.17182/hepdata.29691

None

4 data tables

No description provided.

No description provided.

No description provided.

More…

Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


Experimental Limits on the Strength of Weak Neutral Currents in Lepton Pair Production at {PETRA} Energies

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 99 (1981) 281-286, 1981.
Inspire Record 156813 DOI 10.17182/hepdata.27121

The processes e + e − → e + e − and μ + μ − have been studied at PETRA using the JADE detector. The data, which were collected at s -values of up to 1300 GeV 2 have been analysed in terms of an electro-weak extension of QED to obtain values for the weak vector and axial vector couplings in the lepton sector. The values obtained agree with the predictions of the standard Salam-Weinberg model and the data are further analysed in terms of this model to obtain the limits 0.10 < sin 2 ϑ w < 0.40 (68% CL). The mass of the neutral weak gauge boson is deduced to be greater than 51 GeV/ c 2 .

3 data tables

No description provided.

No description provided.

No description provided.


Precise measurement of the e+ e- ---> mu+ mu- reaction at s**(1/2) = 57.77-GeV

The VENUS collaboration Miura, M. ; Odaka, S. ; Arima, T. ; et al.
Phys.Rev.D 57 (1998) 5345-5362, 1998.
Inspire Record 452097 DOI 10.17182/hepdata.27142

The reaction e+e−→μ+μ− has been measured at s=57.77GeV, based on 289.6±2.6 pb−1 data collected with the VENUS detector at TRISTAN. The production cross section is measured in bins of the production angle within an angular acceptance of |cosθ|<~0.75, according to a model-independent definition. The result is consistent with the prediction of the standard electroweak theory. Although a trend in measurements at lower energies that the total cross section tends to be smaller than the prediction remains, the discrepancy is not significant. The model-independent result is converted to the differential cross section in the effective-Born scheme by unfolding photon-radiation effects. This result can be extrapolated to quantities for the full solid angle as σtotEB=30.05±0.59 pb and AFBEB=−0.350±0.017, by imposing an ordinary assumption on the production-angle dependence. The converted results are used to set constraints on extensions of the standard theory. S-matrix parametrization, and possible contributions from contact interactions and heavy neutral-scalar exchanges are examined.

3 data tables

Primary model-independant results.

Differential cross section in the effective-Born scheme.

Total cross section and forward backward asymmetry results in the effective-Born scheme.