Charge-Exchange Scattering of Negative Pions by Hydrogen at 230, 260, 290, 317, and 371 Mev

Caris, John C. ; Kenney, Robert W. ; Perez-Mendez, Victor ; et al.
Phys.Rev. 121 (1961) 893-904, 1961.
Inspire Record 944987 DOI 10.17182/hepdata.805

The differential cross section for charge-exchange scattering of negative pions by hydrogen has been observed at 230, 260, 290, 317, and 371 Mev. The reaction was observed by detecting one gamma ray from the π0 decay with a scintillation-counter telescope. A least-squares analysis was performed to fit the observations to the function dσdω=Σl=15alPl−1(cosθ) in the c.m. frame. The best fit to our experimental measurements requires only s- and p-wave scattering. The results (in mb) are: The least-squares analysis indicates that d-wave scattering is not established in this energy range.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Total Cross Sections for Negative Pions on Protons at 230, 290, 370, 427, and 460 Mev

Caris, John C. ; Goodwin, Lester K. ; Kenney, Robert W. ; et al.
Phys.Rev. 122 (1961) 262-264, 1961.
Inspire Record 944986 DOI 10.17182/hepdata.26810

Total cross sections for negative pions on protons were measured at laboratory energies of 230, 290, 370, 427, and 460 Mev. The measurements were made in the same pion beams as and at energies identical with those of our π−−p differential scattering experiments. Comparisons of the total and differential scattering can be made with the dispersion theory at a given energy without introducing the systematic errors that would normally enter due to uncertainties in the parameters of more than one pion beam. The measured total cross sections are found to agree within statistics with other measured values, and with the sums of elastic, inelastic, and charge-exchange cross sections measured at this laboratory. The results are:

1 data table

No description provided.


PHOTOPRODUCTION OF POSITIVE PIONS FROM HYDROGEN NEAR THRESHOLD

Lewis, G.M. ; Azuma, R.E. ; Gabathuler, E. ; et al.
Phys.Rev. 125 (1962) 378, 1962.
Inspire Record 8499 DOI 10.17182/hepdata.26792

The variation of the differential cross section for π+ photoproduction from hydrogen, with γ-ray energy, has been examined at a laboratory angle of 58° to the γ-ray beam. A thin hydrogen target, and a counter system designed to eliminate random events, have been employed. Mean values for the differential cross section dσdΩ at γ-ray energies of 162, 168, 175, and 192 Mev are 5.42±0.38, 5.77±0.41, 6.74±0.47, and 8.22±0.58 μb/sr, respectively, where the error limits refer to relative values. The results substantiate the rising trend of the interaction quantity {(dσdΩ)(μ2pε)(1+ωM)2} near threshold, in accord with dispersion theory; and the absolute cross sections are compatible with a threshold value for a0+ near 20 μb/ steradian, consistent with findings in related pion work.

1 data table

No description provided.


Production of Pion Resonances in pi+ p Interactions.

Alff-Steinberger, C. ; Berley, D. ; Colley, D. ;
Phys.Rev.Lett. 9 (1962) 322, 1962.
Inspire Record 48453 DOI 10.17182/hepdata.19352

None

1 data table

No description provided.


Polarization of the Recoil Proton from the Neutral Photoproduction at 800 and 910 Mev

Mencuccini, C. ; Querzoli, R. ; Salvini, G. ;
Phys.Rev. 126 (1962) 1181-1182, 1962.
Inspire Record 944983 DOI 10.17182/hepdata.26790

The measurements on the polarization of the recoil protons from the process γ+p→π0+p have been extended to higher γ-ray energies, at 90° in the center-of-mass system. We have found at 910 Mev a polarization, P=−0.45±0.07; at 800 Mev, P=−0.42±0.10. The rather high values of P agree with the hypothesis that the neutral photoproduction in the 500-1000 Mev range can be described by the well-known three resonant states, and strongly indicate that the second and third resonance have opposite parity. The probable quantum numbers are: T=12, J=32, D pion wave for the second resonance; T=12, J=52, F wave for the third resonance.

1 data table

No description provided.


$\{pi}-p$ interactions at 1.59 GeV/c

Alitti, J. ; Baton, J.P. ; Berthelot, A. ; et al.
Nuovo Cim. 29 (1963) 515, 1963.
Inspire Record 851185 DOI 10.17182/hepdata.980

Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Elastic scattering of negative pions by protons at 2 BeV/c

Damouth, David E. ; Jones, L.W. ; Perl, M.L. ;
Tech.Rep.11, 1963.
Inspire Record 1407276 DOI 10.17182/hepdata.163

None

2 data tables

No description provided.

No description provided.


Photoproduction and Neutral Decay Models of the eta Particle

Bacci, C. ; Penso, G. ; Salvini, G. ;
Phys.Rev.Lett. 11 (1963) 37, 1963.
Inspire Record 48435 DOI 10.17182/hepdata.21858

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////The errors include an uncertainties in solid angle, efficiency, and background).


THE ANGULAR DISTRIBUTION OF THE PHOTOPRODUCTION OF POSITIVE PIONS FROM HYDROGEN BY 187-MeV GAMMA RAYS

Lewis, G.M. ; Leith, David W.G.S. ; Thomas, D.L. ; et al.
Nuovo Cim. 27 (1963) 384, 1963.
Inspire Record 8502 DOI 10.17182/hepdata.37716

The differential cross-section for π+ photoproduction from hydrogen by γ-rays of laboratory energy 187 MeV has been measured at four angles. Two identical counter systems, designed to detect low energy pions unambiguosly in intense electron and γ-ray backgrounds, were used in conjunction with a cylindrical liquid hydrogen target, of very low boil-off rate. The cross-sections at laboratory angles of 39.2°, 66.7°, 111.6°, and 134° are 7.49±0.47, 8.10±0.57, 8.36±0.61 and 9.54±0.61, ·10−30cm2/sr, respectively, where the assigned errors refer only to the relative values. The absolute cross-sections are in substantial agreement with the dispersion theory and confirm the front to back asymmetry.

1 data table

No description provided.


PI+ PHOTOPRODUCTION AT CONSTANT PION ENERGY, AND THE (GAMMA PI RHO) COUPLING

Leith, David W.G.S. ; Little, R. ; Lawson, E.M. ;
Phys.Lett. 8 (1964) 355-357, 1964.
Inspire Record 8509 DOI 10.17182/hepdata.27375

None

1 data table

No description provided.