We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.
No description provided.
Differential cross sections for the reactions e−+p→e−+p+π0 and e−+p→e−+n+π+ have been measured near the Δ(1236) resonance at four-momentum transfers of 0.05, 0.13, 0.25, and 0.4 (GeV/c)2. A few measurements of the π+ angular distribution have been obtained at a four-momentum transfer of 0.6 (GeV/c)2. Cross sections for the π0 reaction are compared with dispersion-theory predictions at several pion-nucleon c.m. energies for each four-momentum transfer. A phenomenological analysis of the π0 results leads to the determination of the magnetic dipole and electric quadrupole partial-wave amplitudes and the γNΔ transition form factor. Evidence is found for the existence of a significant scaler-transverse interference term in the cross section, which is tentatively associated with the resonant scaler quadrupole interaction. Cross sections for π+ electroproduction are compared with dispersion theories using the pion form factor as a free parameter. The results suggest a form factor similar to that of the proton. A fit to the form-factor results, using the ρ-dominance model, requires mρ=560±80 MeV. The rms pion charge radius is estimated to be 〈r2〉12=0.86±0.14 F.
No description provided.
No description provided.
No description provided.
Neutron-proton total cross-sections were measured in the momentum range from 8 GeV/ c to 21 GeV/ c with an accuracy of better than 2% using a 0 o neutron beam at the CERN Proton Synchrotron. The np total cross-section drops from 39.7 mb at 8 GeV/ c at 21 GeV/ c , and thus follows closely the pp total cross-sections in this momentum interval.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.
The differential cross sections for the γ + n → π O + n reaction have been measured at the photon energies of 500–900 MeV. The ratios, R oo = [ d δ d Ω(γ n → π o n ) ] [ d δ d Ω(γ p → π o p ) ] , have been obtained at the c.m. pion angles of 60 O , 90 O , 105 O , 120 O , and 140 O .
Axis error includes +- 0.0/0.0 contribution (8 TO 11////).
Axis error includes +- 0.0/0.0 contribution (8 TO 11////).
Axis error includes +- 0.0/0.0 contribution (8 TO 11////).
The cross section for the production of Ξ + particles in K + p interactions at 12.7 GeV/ c is 10 ± 3 μ b; the Ξ − production cross section is 2.5 ± 1.0 μ b; the upper limit on Ω − or Ω + production is 0.4 μb. The Ξ − are produced preferentially in the backward direction in the CM system while the Ξ + are produced mainly forward. The mass and lifetime of the Ξ + agree with the accepted values for the Ξ − hyperon.
Cross sections have been corrected for the detection probability of all observed hyperons involved in these reactions.
Approximately 700 events of the reaction K − d → K − π − pp s produced by 5.5 GeV/ c kaons were used to measure the cross section for Kπ elastic scattering in the T = 3 2 state by a Chew-Low extrapolation. The cross section does not exceed 2.1 mb and has no structure for Kπ masses from threshold up to 2.0 GeV.
Chew-Low extrapolation is used for evaluation of the K- P elastic cross section.
A systematic search for exotic states produced in K − d interactions at 3 GeV/ c is reported. From the analysis of the mass spectra of strange mesons, non-strange mesons, hyperons with S = −1 and S = −2, upper limits for the production cross sections of exotic resonances may be placed at one or two orders of magnitude smaller than for the production of normal resonances of same strangeness and baryon number.
No description provided.
An experiment has been carried out to determine the imaginary part of the two-photon exchange amplitude by measuring the polarisation of the recoil proton in elastic electron-proton scattering. The polirisation was found to be −0.006 ± 0.030 at q 2 = 1.3 (GeV/ c ) 2 , +0.052 ± 0.55 at 1.5 (GeV/ c ) 2 and +0.065 ± 0.087 at 1.9 (GeV/ c ) 2 .
No description provided.
Compton scattering on protons has been measured at a mean photon energy of 6 GeV and four-momentum transfers − t between 0.06 and 0.60 (GeV/ c ) 2 . The differential cross section shows a diffraction-like behaviour. The cross section extrapolated to t =0 is in fair agreement with the optical point. Discrepancies with the vector meson dominance model are pointed out.
No description provided.