The final state K − pn has been analyzed in a K − deuterium bubble chamber experiment at K − momenta between 680 and 840 MeV/ c . Differential cross sections for elastic K − p and K − n scattering in the c.m. energy range of 1.60–1.74 GeV are presented. The results for K − p→K − p agree well with existing data obtained with hydrogen targets. The results for K − n→K − n are lower but still compatible with recent measurements from a counter experiment.
No description provided.
No description provided.
PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.
The differential cross section for K ± p elastic scattering has been measured in the forward meson direction (0.0008 < t < 0.1 GeV 2 ) in an electronics experiment at incident momenta between 0.9 and 2.06 GeV/ c . The high statistics and absolute normalisation of the data allow a good determination of the real part of the forward nuclear scattering amplitude by means of the Coulomb-nuclear interference effect.
No description provided.
Results are presented of an untagged e + e − → e + e − + π + π − experiment performed at PEP with the DELCO detector. In the invariant-mass range 0.7 ⩽ W ππ < 2.0 GeV/ c 2 , the QED e + e − background is identified and eliminated, and both the π + π − predictions and the μ + μ − and K + K − background substractions are normalized to the measurement of the e e + e − events. The results agree with a simple model of superposition and interference of the f 0 (1270) resonance, produced with helicity 2, with a Born-term continuum. From a fit of the model to the data, the radiative width of the f 0 is determined to be Γ f 0 → γγ = 2.70 ± 0.21 keV.
Data read from graph.
Forward differential cross sections for π − p elastic scattering at 1.0, 1.5 and 2.0 GeV/ c show that the square of the imaginary parts of the nuclear scattering agrees with the optical theorem prediction within ±3%, when averaged over the three momenta.
No description provided.
We have studied inclusive D*± production using the DELCO detector at PEP. Our technique involved kaon identification in the momentum range above 3.2 GeV/c using a threshold gas Čerenkov counter. This leads to a model-independent upper limit on D0−D¯0 mixing of 8.1% (90% confidence level). We also have measured the charm fragmentation function, which peaks at x≡PD*(Ebeam2−MD*2)12 of 0.56±0.06(stat.), and the total cross section for D* production, σ(D*±)=0.140±0.021(stat.)±0.032(syst.) nb (x>0.3, with radiative correction).
No description provided.
SYSTEMATIC ERROR DOES NOT INCLUDE THE UNCERTAINTY ON THE BRANCHING RATIOS USED.
K − p reactions have been studied at 13 different incident momenta between 1138 and 1434 MeV/ c . This interval corresponds to a mass of the K − p system varying from 1858 to 1993 MeV. About 300 000 photographs were taken in the 81 cm Saclay hydrogen bubble chamber exposed to a separated K − beam at the CERN proton-synchrotron. A total of about 44 000 events were analyzed, from which partial and differential cross sections were determined. Polarizations were obtained for the two-body reactions where the decay of the Λ or Σ hyperon allowed their measurement. Data for the two-body channels are presented here as well as for the main quasi-two-body reactions.
PARTIAL CROSS SECTIONS. DATA AT 1.305 TO 1.434 GEV/C FOR FINAL STATES K- P, K- P PI0 AND K- N PI+ COME FROM THE HAIFA GROUP, S. DADO ET AL.
No description provided.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.
Fit values for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1.
Covariance matrix for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1. The (statistical) uncertainty in mTop in the matrix includes the contributions from limited simulation sample sizes.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.