Date

Search for parity noncoserving optical rotation in atomic bismuth

Baird, P.E.G ; Brimicombe, S.M. ; Hunt, R.G. ; et al.
Phys.Rev.Lett. 39 (1977) 798-801, 1977.
Inspire Record 128257 DOI 10.17182/hepdata.20929

We report the results of a laser experiment to search for the parity-nonconserving optical rotation in atomic bismuth. We work at wavelengths close to the 648-nm J=32 — J=52 M1 transition from the ground state. We find R=Im(E1M1)=(+2.7±4.7)×10−8, in disagreement with the theoretical value R=−30×10−8 predicted for this transition on the basis of the Weinberg-Salam model of the weak interactions combined with relativistic central-field atomic theory.

1 data table

No description provided.


Upper Limits of the Proton Magnetic Form-factor in the Timelike Region From $\bar{p} p \to e^+ e^-$ at the {CERN} {ISR}

The Annecy(LAPP)-CERN-Genoa-Lyon-Oslo-Rome-Strasbourg-Turin collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 163 (1985) 400-403, 1985.
Inspire Record 218159 DOI 10.17182/hepdata.49639

From the measurement of e + e - pairs from the reaction p̄p→e + e - at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q 2 ⋍8.9( GeV c ) 2 and Q 2 ⋍12.5( GeV c ) 2 .

1 data table

No description provided.


Precision Measurements of the Anti-proton - Proton Elastic Scattering Cross-section at 90-degrees in the Incident Momentum Range Between 3.5-{GeV}/$c$ and 5.7-{GeV}/$c$

The R704 collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 225 (1989) 296-300, 1989.
Inspire Record 278760 DOI 10.17182/hepdata.29802

The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.

2 data tables

No description provided.

No description provided.


Measurement of the $\phi \phi$ Cross-section in $p \bar{p}$ Annihilations at $e$({CM}) Approximately 3-{GeV}

The R704 collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 231 (1989) 557-562, 1989.
Inspire Record 281268 DOI 10.17182/hepdata.29756

In an experiment performed at the CERN Intersecting Storage Rings as a part of an energy scan to detect the η c formation in p p annihilation, we studied the reaction p p →φφ→ K + K − K + K − . The total cross section has been determined to be 25.0± 7.4±3.8 nb.

1 data table

No description provided.


Observation of parity-violating optical rotation in atomic thallium

Wolfenden, T.D. ; Baird, P.E.G. ; Sandars, P.G.H. ;
EPL 15 (1991) 731-736, 1991.
Inspire Record 331200 DOI 10.17182/hepdata.43748

Parity-violating optical rotation induced by the neutral weak-current interaction has been detected and measured for the first time in atomic thallium vapour. Accurate atomic calculations predicting the size of the rotation are available for this element; thallium also benefits from the Z3 enhancement of the effect. The magnetic-dipole transition 6p1/2-6p3/2 at 1.283 μm was excited using a single-mode semiconductor laser and the small optical rotation was measured using a sensitive polarimeter. The result, expressed in terms of the quantity R = Im E1p.v./M1, is - 12.5(19)10-8 and is consistent with recent calculations based on the standard model.

1 data table

Spin of the Tl nucleus is 1/2.


Measurement of the pi0 pi0 cross-section in anti-p p annihilations at s**(1/2) = 3-GeV

The R704 collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Nucl.Phys.B 368 (1992) 175-189, 1992.
Inspire Record 334973 DOI 10.17182/hepdata.33012

Data collected in the experiment R704 at the CERN ISR are used to study the annihilation process p p → π 0 π 0 at several centre-of-mass energies between 2.97 and 3.56 GeV. A total sample of 7359 events has been identified, from which cross sections and angular distributions in the interval 0 < | cos θ ∗ | < 0.5 have been measured.

2 data tables

No description provided.

No description provided.


First measurement of the left-right cross-section asymmetry in Z boson production by e+ e- collisions

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 70 (1993) 2515-2520, 1993.
Inspire Record 352667 DOI 10.17182/hepdata.19765

We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).

2 data tables

R and L refer to Right and Left handed beam polarization.

Effective weak mixing angle.


A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


Precise Measurement of the Left-Right Cross Section Asymmetry in $Z$ Boson Production by $\ee$ Collisions

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.Lett. 73 (1994) 25-29, 1994.
Inspire Record 373007 DOI 10.17182/hepdata.19681

We present a precise measurement of the left-right cross section asymmetry ($A_{LR}$) for $Z$ boson production by $\ee$ collisions. The measurement was performed at a center-of-mass energy of 91.26 GeV with the SLD detector at the SLAC Linear Collider (SLC). The luminosity-weighted average polarization of the SLC electron beam was (63.0$\pm$1.1)%. Using a sample of 49,392 $\z0$ decays, we measure $A_{LR}$ to be 0.1628$\pm$0.0071(stat.)$\pm$0.0028(syst.) which determines the effective weak mixing angle to be $\swein=0.2292\pm0.0009({\rm stat.})\pm0.0004({\rm syst.})$.}

2 data tables

The observed, corrected, asymmetry. L and R refer to the left and right handed beam polarizations.

The left-right asymmetry and effective weak mixing angle corrected to the pole energy value, taking into account photon exchange and electro weak interferences. L and R refer to left and right beam polarizations.


Measurement of alpha-s from energy-energy correlations at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.D 50 (1994) 5580-5590, 1994.
Inspire Record 373005 DOI 10.17182/hepdata.17744

We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$

5 data tables

Statistical errors only.

Statistical errors only.

ALPHAS from the EEC O(ALPHAS**2) measurement.

More…