The quasielastic reaction νμn→μ−p was studied in an experiment using the BNL 7-foot deuterium bubble chamber exposed to the wide-band neutrino beam with an average energy of 1.6 GeV. A total of 1138 quasielastic events in the momentum-transfer range Q2=0.06−3.00 (GeV/c)2 were selected by kinematic fitting and particle identification and were used to extract the axial-vector form factor FA(Q2) from the Q2 distribution. In the framework of the conventional V−A theory, we find that the dipole parametrization is favored over the monopole. The value of the axial-vector mass MA in the dipole parametrization is 1.07±0.06 GeV, which is in good agreement with both recent neutrino and electroproduction experiments. In addition, the standard assumptions of conserved vector current and no second-class currents are checked.
Measured Quasi-Elastic total cross section.
The production of μ−e+ dileptons by muon neutrinos is studied in a high-statistics bubble-chamber experiment. The experiment consisted of exposing the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mix to a wideband neutrino beam. In a total sample of 146 700±11 700 charged-current interactions, 461 events with an e+(Pe+>300 MeV/c) and a μ− are observed. The rate for μ−e+ dilepton production in measured to be (0.42±0.06)%. The energy dependence of this rate is presented. The kinematic distributions for the μ−e+ events are consistent with charm production and subsequent semileptonic decay. A total of 60 KS0 and 31 Λ0 decays were observed in the μ−e+ event sample. The measured rates for neutral-strange-particle production are 0.78±0.12 K0K¯0's and 0.19±0.04 Λ0's per μ−e+ event. Finally, rates for Λc+, D0, and D+ production in charged-current νμ interactions are derived. They are found to be (4−2+10)%, (1.7−0.7+0.5)%, and (1.3−0.5+0.4)%, respectively.
No description provided.
No description provided.
No description provided.
A total of 22 muon-neutrino-electron elastic-scattering events (νμe→νμe) have been observed in an exposure of the Fermilab 15-foot bubble chamber filled with a heavy neon-hydrogen mixture to a wide-band neutrino beam. The elastic-scattering cross section is measured to be 1.67±0.44×10−42Eν cm2 GeV−1. The value of the weak mixing angle (sin2θW) determined from this cross section, which is consistent with other measurements of this angle, is 0.20−0.05+0.06.
No description provided.
The total cross sections for νμn and νμp charged-current interactions and their ratio R=σT(νn)σT(νp) have been measured as a function of neutrino energy from 0.4 to 10 GeV. The experiment is performed using the BNL 7-foot deuterium bubble chamber exposed to the Alternating Gradient Synchrotron wide-band neutrino beam. The absolute values of the cross sections are normalized to the quasielastic scattering (νμn→μ−p) cross section. Above 1.6 GeV the data are consistent with the quark-parton model. We find that σT(νn)Eν=(1.07±0.05)×10−38, σT(νp)Eν=(0.54±0.04)×10−38, and σT(νN)Eν=(0.80±0.03)×10−38 cm2/GeV for 〈Eν〉=3.2 GeV, and R=1.95±0.10 for 〈Eν〉=3.7 GeV.
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).
Axis error includes +- 0.0/0.0 contribution (?////SYSTEMATIC ERROR NOT GIVENNEUTRAL CURRENT AND NEUTRAL PARTICLES INDUCED REACTIONS, RESCATTERING IN DEUTERIUM).
The Fermilab 15-ft bubble chamber, filled with a heavy neon-hydrogen mix, was exposed to a narrow-band νμ beam. Based on the observation of 830 charged-current νμ interactions, the cross section was found consistent with a linear rise with the neutrino energy in the interval 10 GeV<~Eν≲240 GeV. The average slope was determined to be σνEν=(0.62±0.05)×10−38 cm2 GeV−1.
Measured charged current total cross section.
No description provided.
Distributions of the Bjorken scaling variables x and y, and the structure function F+(x), are presented both for neutral-current and for charged-current νμ interactions. The data were obtained by use of the Fermilab 15-ft neon bubble chamber exposed to a narrow-band νμ beam. Results are based on 151 neutral-current and 683 charged-current events. An important feature of the neutral-current analysis is the event-by-event reconstruction of the outgoing neutrino.
No description provided.
DATA REQUESTED FROM C.BALTAY ON 20/9/91.
DATA REQUESTED FROM C.BALTAY ON 20/9/91.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.
We present an angular analysis of the $B^{+}\rightarrow K^{\ast+}(\rightarrow K_{S}^{0}\pi^{+})\mu^{+}\mu^{-}$ decay using 9$\,\mbox{fb}^{-1}$ of $pp$ collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from Standard Model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner $B^{0}\rightarrow K^{\ast0}\mu^{+}\mu^{-}$ decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Results for the CP-averaged observables Fl, Afb and S3–S9. The first uncertainties are statistical and the second systematic.
Results for the optimised observables FL and P1–P'8. The first uncertainties are statistical and the second systematic.
The CP-averaged observable Fl versus q2. The first (second) error bars represent the statistical (total) uncertainties.