Measurement of dijet production in neutral current deep inelastic scattering at high Q**2 and determination of alpha(s).

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 507 (2001) 70-88, 2001.
Inspire Record 553352 DOI 10.17182/hepdata.46870

Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).

13 data tables

The differential dijet cross section dsig/dZP1.

The differential dijet cross section dsig/dlog10(x).

The differential dijet cross section dsig/dlog10(xi).

More…

Measurement of the inclusive jet cross-section in anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 032001, 2001.
Inspire Record 552797 DOI 10.17182/hepdata.42928

We present results from the measurement of the inclusive jet cross section for jet transverse energies from 40 to 465 GeV in the pseudo-rapidity range $0.1<|\eta|<0.7$. The results are based on 87 $pb^{-1}$ of data collected by the CDF collaboration at the Fermilab Tevatron Collider. The data are consistent with previously published results. The data are also consistent with QCD predictions given the flexibility allowed from current knowledge of the proton parton distributions. We develop a new procedure for ranking the agreement of the parton distributions with data and find that the data are best described by QCD predictions using the parton distribution functions which have a large gluon contribution at high $E_T$ (CTEQ4HJ).

1 data table

The inclusive jet cross section. Statistical errors shown. The systematic errors are given in the html link above.


Measurement of the two jet differential cross-section in proton anti-proton collisions at s**(1/2) = 1800-GeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 012001, 2001.
Inspire Record 538041 DOI 10.17182/hepdata.42933

A measurement is presented of the two-jet differential cross section, d^3\sigma/dE_T d\eta_1 d\eta_2, at center of mass energy sqrt{s} = 1800 GeV in proton-antiproton collisions. The results are based on an integrated luminosity of 86 pb^-1 collected during 1994-1995 by the CDF collaboration at the Fermilab Tevatron collider. The differential cross section is measured as a function of the transverse energy, E_T, of a jet in the pseudorapidity region 0.1 &lt; |eta_1| &lt; 0.7 for four different pseudorapidity bins of a second jet restricted to 0.1 &lt; |\eta_2| &lt; 3.0. The results are compared with next-to-leading order QCD calculations determined using the CTEQ4 and MRST sets of parton distribution functions. None of the sets examined in this analysis provides a good description of the data.

4 data tables

The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 0.1 to 0.7.

The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 0.7 to 1.4.

The measured dijet differential cross section with the second jet in the ABS(ETARAP) range 1.4 to 2.1.

More…

Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Nucl.Phys.B 596 (2001) 3-29, 2001.
Inspire Record 534829 DOI 10.17182/hepdata.46889

Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

5 data tables

The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.

The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.

More…

Measurement of inclusive prompt photon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 472 (2000) 175-188, 2000.
Inspire Record 508908 DOI 10.17182/hepdata.43894

First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.

2 data tables

The differential cross section for inclusive photoproduction of isolated photons.

Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.


Measurement of Dijet photoproduction at high transverse energies at HERA

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 11 (1999) 35-50, 1999.
Inspire Record 500491 DOI 10.17182/hepdata.43992

The cross section for dijet photoproduction at high transverse energies is presented as a function of the transverse energies and the pseudorapidities of the jets. The measurement is performed using a sample of ep-interactions corresponding to an integrated luminosity of 6.3 pb^(-1), recorded by the ZEUS detector.Jets are defined by applying a k_T-clustering algorithm to the hadrons observed in the final state. The measured cross sections are compared to next-to-leading order QCD calculations. In a kinematic regime where theoretical uncertainties are expected to be small, the measured cross sections are higher than these calculations.

24 data tables

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

The dijet cross section for the full x(gamma) range as a function of the ET of the leading jet.

More…

Dijet production in photon-photon collisions at S**(1/2)(ee) = 161-GeV and 172-GeV

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 10 (1999) 547-561, 1999.
Inspire Record 474009 DOI 10.17182/hepdata.49386

Di-jet production is studied in collisions of quasi-real photons radiated by the LEP beams at e+e- centre-of-mass energies 161 and 172 GeV. The jets are reconstructed using a cone jet finding algorithm. The angular distributions of direct and double-resolved processes are measured and compared to the predictions of leading order and next-to-leading order perturbative QCD. The jet energy profiles are also studied. The inclusive two-jet cross-section is measured as a function of transverse energy and rapidity and compared to next-to-leading order perturbative QCD calculations. The inclusive two-jet cross-section as a function of rapidity is compared to the prediction of the leading order Monte Carlo generators PYTHIA and PHOJET. The Monte Carlo predictions are calculated with different parametrisations of the parton distributions of the photon. The influence of the `underlying event' has been studied to reduce the model dependence of the predicted jet cross-sections from the Monte Carlo generators.

14 data tables

Differential 2-jet cross section as a function of cos(theta*) for 'double-resolved' and 'direct' events.

No description provided.

No description provided.

More…

Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

5 data tables

Differential cross section as a function of rapidity of the two highest Et jets in event.

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of invariant mass of the GAMMA P system.

More…

Measurement of the differential cross-section for events with large total transverse energy in p anti-p collisions at s**(1/2) = 1.8-Tev

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 80 (1998) 3461-3466, 1998.
Inspire Record 448075 DOI 10.17182/hepdata.42179

We present a measurement of the differential cross section dσ/dΣETjet for the production of multijet events in pp¯ collisions where the sum is over all jets with transverse energy ETjet>ETmin. The measured cross section for events with ΣETjet>320GeV is compared to O(αs3) perturbative QCD predictions and QCD parton shower Monte Carlo predictions. The agreement between the O(αs3) predicted and observed event rates is reasonable for ETmin=100GeV, but poorer for ETmin=20GeV.

2 data tables

The ET shown here (unless specified otherwise) is the sum of all the jets' individual ETs. All jets are required to have the absolute values of their pseudorapidity < 4.2 and data are given for two different minimum ET cut-offs.. The errors given are statistical only.

Integrated cross sections. Again ET is the sum of the individual ETs of thejets.


Inclusive jet production in photon-photon collisions at s**(1/2) = 130-GeV and 136-GeV

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 73 (1997) 433-442, 1997.
Inspire Record 424635 DOI 10.17182/hepdata.47713

The inclusive one- and two-jet production cross-sections are measured in collisions of quasi-real photons radiated from the LEP beams at e+e− centre-of-mass energies \(\sqrt{s}_{\rm ee}=130\) and 136 GeV using the OPAL detector at LEP. Hard jets are reconstructed using a cone jet finding algorithm. The differential jet cross-sections \({\rm d}\sigma /{\rm d}E_{T}^{\rm jet}\) are compared to next-to-leading order perturbative QCD calculations. Transverse energy flows in jets are studied separately for direct and resolved two-photon events.

4 data tables

Inclusive one-jet cross section.

One-jet rapidity distribution.

Inclusive two-jet cross section.

More…