Spin alignment and violation of the OZI rule in exclusive $\omega$ and $\phi$ production in pp collisions

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Nucl.Phys.B 886 (2014) 1078-1101, 2014.
Inspire Record 1298025 DOI 10.17182/hepdata.64185

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons in different selected reference frames provides another handle to distinguish the contributions of these two major reaction types. Again, dependences of the alignment on $x_{F}$ and on $M_{p\mathrm{V}}$ are found. Most of the observations can be traced back to the existence of several excited baryon states contributing to $\omega$ production which are absent in the case of the $\phi$ meson. Removing the low-mass $M_{p\mathrm{V}}$ resonant region, the OZI rule is found to be violated by a factor of eight, independently of $x_\mathrm{F}$.

5 data tables

Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI). R(PHI/OMEGA) is multiplied by 100 to improve readability.

Differential cross section ratio R(PHI/OMEGA) and corresponding OZI violation factors F(OZI) for different cuts on the vector meson momentum P(V). R(PHI/OMEGA) is multiplied by 100 to improve readability.

Spin alignment RHO(00) extracted from the helicity angle distributions for PHI and OMEGA production, in the latter case with various cuts on P(V). The uncertainty is the propagated uncertainty from the linear fits, which in turn includes the quadratic sum of statistical uncertainties and uncertainties from the background subtraction.

More…

Antideuteron production in $\Upsilon(nS)$ decays and in $e^+e^- \to q\overline{q}$ at $\sqrt{s} \approx 10.58 \mathrm{\,Ge\kern -0.1em V}$

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 89 (2014) 111102, 2014.
Inspire Record 1286317 DOI 10.17182/hepdata.64605

We present measurements of the inclusive production of antideuterons in $e^+e^-$ annihilation into hadrons at $\approx 10.58 \mathrm{\,Ge\kern -0.1em V}$ center-of-mass energy and in $\Upsilon(1S,2S,3S)$ decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find $\mathcal{B}(\Upsilon(1S) \to \bar{d}X) = (2.81 \pm 0.49 \mathrm{(stat)} {}^{+0.20}_{-0.24} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(2S) \to \bar{d}X) = (2.64 \pm 0.11 \mathrm{(stat)} {}^{+0.26}_{-0.21} \mathrm{(syst)})/! \times /! 10^{-5}$, $\mathcal{B}(\Upsilon(3S) \to \bar{d}X) = (2.33 \pm 0.15 \mathrm{(stat)} {}^{+0.31}_{-0.28} \mathrm{(syst)})/! \times /! 10^{-5}$, and $\sigma (e^+e^- \to \bar{d}X) = (9.63 \pm 0.41 \mathrm{(stat)} {}^{+1.17}_{-1.01} \mathrm{(syst)}) \mbox{\,fb}$.

5 data tables

The rate of antideuteron production from the decay of UPSILON(3S).

The rate of antideuteron production from the decay of UPSILON(2S).

The rate of antideuteron production from the decay of UPSILON(1S).

More…

Midrapidity antiproton-to-proton ratio in pp collisions at $\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Phys.Rev.Lett. 105 (2010) 072002, 2010.
Inspire Record 859610 DOI 10.17182/hepdata.55557

The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

2 data tables

The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.

The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).


Production of the Charmonium States chi(c1) and chi(c2) in Proton Nucleus Interactions at s**(1/2) = 41.6-GeV

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Phys.Rev.D 79 (2009) 012001, 2009.
Inspire Record 790682 DOI 10.17182/hepdata.57464

A measurement of the ratio R_chic = (chic -> Jpsi + gam)/ Jpsi in pC, pTi and pW interactions at 920 GeV/c (sqrt{s}=41.6 GeV) in the Feynman-x range -0.35 < x_F(Jpsi) < 0.15 is presented. Both mu+mu- and e+e- Jpsi decay channels are observed with an overall statistics of about 15000 chic events, which is by far the largest available sample in pA collisions. The result is R_chic = 0.188+-0.013(st)(+0.024)(-0.022)(sys) averaged over the different materials, when no Jpsi and chic polarisations are considered. The chic_1 to chic_2 production ratio R_12 = R_chic1/R_chic2 is measured to be 1.02+-0.40, leading to a cross section ratio sigma(chic_1)/sigma(chic_2)=0.57+-0.23. The dependence of R_chic on the Feynman-x of the Jpsi, x_F(Jpsi), and its transverse momentum, p_T(Jpsi), is studied, as well as its dependence on the atomic number, A, of the target. For the first time, an extensive study of possible biases on R_chic and R_12 due to the dependence of acceptance on the polarization states of Jpsi and chic is performed. By varying the polarisation parameter, lambda(obs), of all produced Jpsi's by two sigma around the value measured by HERA-B, and considering the maximum variation due to the possible chic_1 and chic_2 polarisations, it is shown that R_chic could change by a factor between 1.02 and 1.21 and R_12 by a factor between 0.89 and 1.16.

3 data tables

Measurement of R_CHI/C in <E+ E->, <MU+ MU-> and combined channel.

Measurement of R_12 in <E+ E->, <MU+ MU-> and combined channel.

Measurement of SIG(C1)/SIG(C2) in <E+ E->, <MU+ MU-> and combined channel.


Measurement of D^0, D^+, D_s^+ and D^{*+} Production in Fixed Target 920 GeV Proton-Nucleus Collisions

The HERA-B collaboration Abt, I. ; Adams, M. ; Agari, M. ; et al.
Eur.Phys.J.C 52 (2007) 531-542, 2007.
Inspire Record 757982 DOI 10.17182/hepdata.57312

The inclusive production cross sections of the charmed mesons D^0, D^+, D_s^+ and D^{*+} have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman's x variable are given for the central rapidity region and for transverse momenta up to $\pT=3.5$ GeV/$c$. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.

7 data tables

Cross sections (micro barns) in the visible range (-0.15<x_F<0.05).

Cross sections (micro barns) extrapolated to the total phase space.

Cross sections(micro barns) for particles production in the visible range (-0.15<x_F<0.05).

More…

Ratios of multijet cross-sections in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 86 (2001) 1955-1960, 2001.
Inspire Record 532905 DOI 10.17182/hepdata.42971

We report on a study of the ratio of inclusive three-jet to inclusive two-jet production cross sections as a function of total transverse energy in p-pbar collisions at a center-of-mass energy sqrt{s} = 1.8 TeV, using data collected with the D0 detector during the 1992-1993 run of the Fermilab Tevatron Collider. The measurements are used to deduce preferred renormalization scales in perturbative O(alpha_s^3) QCD calculations in modeling soft-jet emission.

1 data table

First and second errors correspond to uncorrelated (C=UNCORR) and correlated (C=CORR) uncertainties. Uncorrelated uncertainties include statistical and uncorrelated systematic uncertainties added in quadrature.


A study of the centrally produced eta pi0 and eta pi- systems in pp interactions at 450 GeV/c

The WA102 collaboration Barberis, D. ; Binon, F.G. ; Close, F.E. ; et al.
Phys.Lett.B 488 (2000) 225-233, 2000.
Inspire Record 529900 DOI 10.17182/hepdata.41733

A partial wave analysis of the centrally produced eta pi0 and eta pi- channels has been performed in pp collisions using an incident beam momentum of 450 GeV/c. Clear a0(980) and a2(1320) signals have been observed in S and D+ waves respectively. The dPT, phi and |t| distributions of these resonances are presented.

2 data tables

The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)). SIG(C=TOT) stands for the cross section for the whole ABS(PT(P=3)-PT(P=4))interval.

The variable ABS(PT(P=3)-PT(P=4)) is used as a glueball-QUARK QUARKBAR filter (see F.E.Close and A.Krik, PL 397B, 333 (1997)).


Production of upsilon(1S) mesons from chi(b) decays in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 84 (2000) 2094-2099, 2000.
Inspire Record 508395 DOI 10.17182/hepdata.50106

We have reconstructed the radiative decays $\chi_{b}(1P) \to \Upsilon(1S) \gamma $ and $\chi_{b}(2P) \to \Upsilon(1S) \gamma $ in $p \bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p^{\Upsilon}_{T}>8.0$ GeV/$c$, the fractions that come from $\chi_{b}(1P)$ and $\chi_{b}(2P)$ decays are $(27.1\pm6.9(stat)\pm4.4(sys))%$ and $(10.5\pm4.4(stat)\pm1.4(sys))%$, respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $(50.9\pm8.2(stat)\pm9.0(sys))%$.

1 data table

No description provided.


D*+- production in 350-GeV/c pi- N interactions.

The BEATRICE collaboration Adinolfi, M. ; Alexandrov, Y. ; Angelini, C. ; et al.
Nucl.Phys.B 547 (1999) 3-18, 1999.
Inspire Record 496156 DOI 10.17182/hepdata.49177

We report measurements of D ∗± production in interactions between 350 GeV/ c π − particles and nuclei. Reconstruction of the decay D ∗+ → D 0 π + and charge conugate, with D 0 identified via its decays to K − π + and K − π − π + π + , has allowed isolation of a sample of 611 ± 28 D ∗± mesons, produced at positive x F . Assuming a linear A-dependence, the cross-section per nucleon in the region x F > 0 is measured to be 1.41 ± 0.10 ± 0.11 μ b for D ∗+ and 1.84 ± 0.12 ± 0.15 μ b for D ∗− . We present measurements of differential cross-sections with respect to x F and P t 2 , and compare data for D ∗± (vector-meson) production with data for production of charmed pseudoscalar mesons.

3 data tables

No description provided.

Data on D0, DBAR0, D+, and D- meson production are taken from previous publication of this collaboration (see NP B495, 3).

No description provided.


A measurement of R(b) using a double tagging method.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 8 (1999) 217-239, 1999.
Inspire Record 476786 DOI 10.17182/hepdata.49348

The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.

1 data table

Second systematic error depends on Rc=Delta(R_c)/R_c ratio, where Delta(R_c) is the deviation of R_c from the value 0.172 predicted by the Standard Model.