The interactions of 604 MeV π− mesons in a hydrogen bubble chamber have been systematically analyzed. In 33 000 pictures a total of 8052 usable events were found, corresponding to cross sections of 18.9±1.3 mb for σ(elastic), 4.98±0.54 mb for σ(π−pπ0), 7.87±0.91 mb for σ(π−nπ+), 14.0±1.0 mb for σ(neutrals), with σ(two−pionproduction)<0.2 mb, for a total cross section of 45.9±1.9 mb at this energy. The angular distribution for elastic scattering was fitted with a fifth-order polynomial in cosθ which gave a value of dσdΩ(0°) consistent with dispersion theory. The pion-pion effective-mass distributions for both single-pion-production channels showed pronounced peaking at high mass values, strongly inconsistent with simple isobar-production kinematics. Simple one-pion exchange does not appear to play a significant role.
No description provided.
No description provided.
The elastic scattering of K+ mesons on protons is studied at 3.5 and 5 GeV/c. The total elastic cross-sections are found to be (4.36±0.36) mb and (3.82±0.41) mb respectively. The differential elastic cross-sections, which exhibit characteristic diffraction peaks, are fitted by dσ/dt=(dσ/dt)0eαt, giving α=(3.85±0.12) and (4.70±0.21) (GeV/c)−2 for the two momenta respectively, with |t|⪝0.65 (GeV/c)2. The results are compared to those at neighbouring energies, giving some support to the presence of a real part of the forward scattering amplitude. The diffraction peak shows definite shrinking with increasing momenta. The data are examined in the light of models for high-energy scattering.
No description provided.
Single-pion production has been studied in the reactions π−p→π−π+n and π−p→π−π0p at 790, 830, and 870 MeV. A total of 4193 events in these two channels, divided approximately equally between the three energies, have been identified. The most interesting feature of the data is the tendency for events to concentrate at high values of mππ and low values of four-momentum transfer. These effects are discussed in terms of conventional isobar models and a model involving two-pion exchange. Partial cross sections for the reactions studied are reported for each energy.
No description provided.
Joint decay distributions have been studied in the reaction K + p → K ∗o (1420)Δ ++ at 5.0 GeV/ c in the transversity spin reference frame. Two alternative spin-parity assignments 2 + and 3 − for the K ∗ resonance have been considered and a comparison with the quark-model predictions has been made. The predictions of the quark model are equally well satisfied by the experimental results for both the 2 + and 3 − spin-parity assignments.
No description provided.
The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
3 H̃e nuclei were observed in the negative beam, produced by 70 GeV protons on an Al target. Five 3 H̃e have been identified among 2.4 · 10 11 particles that passed through the apparatus. Scintillation and Čerenkov counters were used to measure the electrical charge and velocity of particles. The mass of 3 H̃e is found to be M 3 H ̃ e = (1.00 ± 0.03)3m p , the charge is z = (0.99 ± 0.03)2 e . The ratio of differential production cross sections of 3 H ̃ e (P = 20 GeV /c) and π − (P = 10 GeV/c ) equals 2 · 10 −11 . This corresponds to antihelium −3 production cross section d 2 σ 3 H ̃ e / d Ω d P = 2.0 · 10 −35 cm 2 / sr · GeV /c per Al nuclei and 2.2 · 10 −36 cm 2 sr · GeV/ c per nucleon.
No description provided.
No description provided.
The result of a search for magnetic charged particles at 70 GeV IPHE proton synchrotron is presented. Using the ferromagnetic trap method the upper limit of the magnetic monopole production cross-section in proton-nucleon collisions was found to be α (95%) ⩾ × 10 −43 cm 2 .
No description provided.
As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.
No description provided.
No description provided.
No description provided.
Results are presented on an analysis of the reaction K + p → K ∗+ (890) p at 16 GeV/ c and compared with data at lower incident momenta and with corresponding results for the reaction K − p → K ∗− (890) p. It is found for both reactions that the energy dependence of the cross section exhibits a simple ( p − n lab behaviour.
BREIT-WIGNER RESONANCE FITS WITH BACKGROUND.
Results are presented on the reaction K − p → K̄ o n for momenta above 20 GeV/ c . Events were identified by precise measurement of the opening angle in the decay K o → π + π − without using a magnetic field. The cross-section is described by a power energy dependence.
No description provided.