Date

Collaboration

Subject_areas

Study of photon dissociation in diffractive photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 421-435, 1997.
Inspire Record 442287 DOI 10.17182/hepdata.10933

Diffractive dissociation of quasi-real photons at a photon-proton centre of mass energy of W 200 GeV is studied with the ZEUS detector at HERA. The process under consideration is gamma p -> X N, where X is the diffractively dissociated photon system of mass M_X and N is either a proton or a nucleonic system with mass M_N < 2GeV. The cross section for this process in the interval 3 < M_X < 24 GeV relative to the total photoproduction cross section was measured to be sigma~partial_D / sigma_tot = 6.2 +- 0.2(stat) +- 1.4(syst)%. After extrapolating this result to the mass interval of m_phi~2 < M_X~2 < 0.05 W~2 and correcting it for proton dissociation, the fraction of the total cross section attributed to single diffractive photon dissociation, gamma p -> X p, is found to be sigma_SD / sigma_tot = 13.3 +- 0.5(stat) +- 3.6(syst)%. The mass spectrum of the dissociated photon system in the interval 8 < M_X < 24 GeV can be described by the triple pomeron (PPP) diagram with an effective pomeron intercept of alpha_P(0) = 1.12 +- 0.04(stat) +- 0.08(syst). The cross section for photon dissociation in the range 3 < M_X < 8 GeV is significantly higher than that expected from the triple pomeron amplitude describing the region 8 < M_X < 24 GeV. Assuming that this discrepancy is due to a pomeron-pomeron-reggeon (PPR) term, its contribution to the diffractive cross section in the interval 3 < M_X < 24 GeV is estimated to be f_PPR = 26 +- 3(stat) +- 12(syst)%.

4 data tables

Fraction of the total photoproduction cross section attributed to the photon dissociation.

The fraction of the total photoproduction cross section due to single dif fractive photon dissociation, in the mass range M_phi**2 < M_DD < X >**2 < 0.05 *W**2.

Identification of the diffractive processes was performed on the basis of the shape of reconstructed hadronic mass spectrum. No rapidity-gap was required.

More…

ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables
More…

Measurement of the photon proton total cross section at a center-of-mass energy of 209-GeV at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Nucl.Phys.B 627 (2002) 3-28, 2002.
Inspire Record 569270 DOI 10.17182/hepdata.46671

The photon-proton total cross section has been measured in the process e+ p -> e+ gamma p -> e+ X with the ZEUS detector at HERA. Events were collected with photon virtuality Q^2 < 0.02 GeV^2 and average gamma-p center-of-mass energy W_{gamma p} = 209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb^{-1}. The measured total cross section is sigma_{tot}^{gamma p} = 174 +- 1 (stat.) +- 13 (syst.) microbarns. The energy dependence of the cross section is compatible with parameterizations of high-energy p-p and p-pbar data.

1 data table

Total GAMMA P cross section.


Leading neutron production in e+ p collisions at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Nucl.Phys.B 637 (2002) 3-56, 2002.
Inspire Record 587158 DOI 10.17182/hepdata.46613

The production of neutrons carrying at least 20% of the proton beam energy ($\xl > 0.2$) in $e^+p$ collisions has been studied with the ZEUS detector at HERA for a wide range of $Q^2$, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, $e p\to e' X n$, is measured relative to the inclusive cross section, $e p\to e' X$, thereby reducing the systematic uncertainties. For $\xl >$ 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the $\gamma p$ system. For $0.64 < \xl < 0.82$, the rate of neutrons is almost independent of the Bjorken scaling variable $x$ and $Q^2$. However, at lower and higher $\xl$ values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, ${{F}^{\rm\tiny LN(3)}_2}(x,Q^2,\xl)$, rises at low values of $x$ in a way similar to that of the inclusive \ff of the proton. The total $\gamma \pi$ cross section and the structure function of the pion, $F^{\pi}_2(x_\pi,Q^2)$ where $x_\pi = x/(1-\xl)$, have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed $Q^2$, $F^{\pi}_2$ has approximately the same $x$ dependence as $F_2$ of the proton.

18 data tables

The XL bins, their acceptance and the acceptance uncertainty. The RH columnshows the contribution from the energy-scale uncertainty - this is completely c orrelated between the bins.

The slope of the PT**2 distribution from the 1995 DIS data. The uncertainties shown in this table were communicated to us by the authors, and supercede those given in the paper.

The normalized cross section (1/SIG)DSIG/dXL for leading neutrons with THETA < 0.8 mrad with statistical errors only.. For the lowest Q**2 data, the normalization uncertainty is +-5 PCT, and with XL > 0.52 there is a further normalization uncertainty of +-4 PCT.. For the intermediate Q**2 and DIS data the normalization uncertainty is +-4 PCT.

More…

Measurements of inelastic J/psi and psi' photoproduction at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Eur.Phys.J.C 27 (2003) 173-188, 2003.
Inspire Record 601166 DOI 10.17182/hepdata.46546

The cross sections for inelastic photoproduction of J/psi and psi' mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 38.0 pb-1. The events were required to have 0.1 < z < 0.9 and 50 < W < 180 GeV, where z is the fraction of the incident photon energy carried by the J/psi in the proton rest frame and W is the photon-proton centre-of-mass energy. The psi' to J/psi cross-section ratio was measured in the range 0.55 < z < 0.9. The J/psi data, for various ranges of transverse momentum, are compared to theoretical models incorporating colour-singlet and colour-octet matrix elements. Predictions of a next-to-leading-order colour-singlet model give a good description of the data, although there is a large normalisation uncertainty. The J/psi helicity distribution for z > 0.4 is compared to leading-order QCD predictions.

10 data tables

Measurment of the total cross section, with various PT thresholds, in the high Z > 0.9 region.

Ratio of cross section for PSI(2S) to J/PSI production. as a function of PT. Statistical errors only.

Ratio of cross section for PSI(2S) to J/PSI production. as a function of W. Statistical errors only.

More…

Observation of the strange sea in the proton via inclusive Phi-meson production in neutral current deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 553 (2003) 141-158, 2003.
Inspire Record 601697 DOI 10.17182/hepdata.46535

Inclusive phi-meson production in neutral current deep inelastic e+p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 45 pb^{-1}. The phi mesons were studied in the range 10<Q2<100 GeV2, where Q2 is the virtuality of the exchanged photon, and in restricted kinematic regions in the transverse momentum, p_T, pseudorapidity, eta, and the scaled momentum in the Breit frame, x_p. Monte Carlo models with the strangeness-suppression factor as determined by analyses of e+e- annihilation events overestimate the cross sections. A smaller value of the strangeness-suppression factor reduces the predicted cross sections, but fails to reproduce the shapes of the measured differential cross sections. High-momentum phi mesons in the current region of the Breit frame give the first direct evidence for the strange sea in the proton at low x.

9 data tables

The total PHI meson cross section, corrected for acceptance (45%) in the given kinematical region.

Differential PHI meson cross section as a function of its transverse momentum.

Differential PHI meson cross section as a function of its pseudorapidity.

More…

Measurement of high-Q**2 charged current cross sections in e+ p deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 32 (2003) 1-16, 2003.
Inspire Record 623557 DOI 10.17182/hepdata.46433

Cross sections for e^+p charged current deep inelastic scattering at a centre-of-mass energy of 318 GeV have been determined with an integrated luminosity of 60.9pb^-1 collected with the ZEUS detector at HERA. The differential cross sections dsigma/dQ^2, dsigma/dx and dsigma/dy for Q^2>200 GeV^2 are presented. In addition, d^2sigma/dxdQ^2 has been measured in the kinematic range 280 GeV^2 < Q^2 < 17000 GeV^2 and 0.008 < x < 0.42. The predictions of the Standard Model agree well with the measured cross sections. The mass of the W boson propagator is determined to be M_W=78.9 +/- 2.0 (stat.) +/- 1.8 (syst.) +2.0 -1.8 (PDF) GeV from a fit to dsigma/dQ^2. The chiral structure of the Standard Model is also investigated in terms of the (1-y)^2 dependence of the the double-differential cross section. The structure-function F_2^CC has been extracted by combining the measurements presented here with previous ZEUS results from e^-p scattering, extending the measurement obtained in a neutrino-nucleus scattering experiment to a significantly higher Q^2 region.

12 data tables

The total cross section for Q**2 > 200 GeV**2.

The differential cross section as a function of Q**2.

The differential cross section as a function of X.

More…

Measurement of D*+- production in deep inelastic e+- p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 69 (2004) 012004, 2004.
Inspire Record 626816 DOI 10.17182/hepdata.46419

Inclusive production of $D^*(2010)$ mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.9 pb$^{-1}$. The decay channel $D^{* +}\to D^0 \pi^+ $ with $D^0\to K^-\pi^+$ and corresponding antiparticle decay were used to identify $D^*$ mesons. Differential $D^*$ cross sections with $1.5<Q^2<1000$ GeV$^2$ and $0.02<y<0.7$ in the kinematic region $1.5<p_T(D^*)<15$ GeV and $|\eta(D^*)|<1.5$ are compared to different QCD calculations incorporating different parameterisations of the parton densities in the proton. The data show sensitivity to the gluon distribution in the proton and are reasonably well described by next-to-leading-order QCD with the ZEUS NLO QCD fit used as the input parton density in the proton. The observed cross section is extrapolated to the full kinematic region in $p_T(D^*)$ and $\eta(D^*)$ in order to determine the open-charm contribution, $F_2^{\rm charm}(x,Q^2)$, to the proton structure function, $F_2$. Since, at low $Q^2$, the uncertainties of the data are comparable to those from the QCD fit, the measured differential cross sections in $y$ and $Q^2$ should be used in future fits to constrain the gluon density.

17 data tables

Overall total cross section. The second DSYS error is due to the uncertainty in the BR for D* and D0 decay.

Measured differential cross section as a function of Q**2.

Measured differential cross section as a function of X.

More…

High-Q**2 neutral current cross sections in e+ p deep inelastic scattering at s**(1/2) = 318-GeV.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 70 (2004) 052001, 2004.
Inspire Record 636641 DOI 10.17182/hepdata.46282

Cross sections for e^+p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of sqrt{s}=318 GeV with the ZEUS detector at HERA using an integrated luminosity of 63.2 pb^-1. The double-differential cross section, d^2sigma/dxdQ^2, is presented for 200 GeV^2 < Q^2 < 30000 GeV^2 and for 0.005 < x < 0.65. The single-differential cross-sections dsigma/dQ^2, dsigma/dx and dsigma/dy are presented for Q^2 > 200 GeV^2. The effect of Z-boson exchange is seen in dsigma/dx measured for Q^2 > 10000 GeV^2. The data presented here were combined with ZEUS e^+p neutral current data taken at sqrt{s}=300 GeV and the structure function F_2^{em} was extracted. All results agree well with the predictions of the Standard Model.

38 data tables

The single differential DSIG/DQ**2 cross section corrected to the electroweak Born level. See next table for a breakdown of the systematic errors.

Systematic errors with bin to bin correlations for the cross section DSIG/DQ**2.

Single differential cross section DSIG/DX for a Q**2 cut of 200 GeV**2 corrected to the electroweak Born level.

More…

Measurement of single pi0 production in neutral current neutrino interactions with water by a 1.3-GeV wide band muon neutrino beam.

The K2K collaboration Nakayama, S. ; Mauger, C. ; Ahn, M.H. ; et al.
Phys.Lett.B 619 (2005) 255-262, 2005.
Inspire Record 657451 DOI 10.17182/hepdata.41903

Neutral current single pi0 production induced by neutrinos with a mean energy of 1.3 GeV is measured at a 1000 ton water Cherenkov detector as a near detector of the K2K long baseline neutrino experiment. The cross section for this process relative to the total charged current cross section is measured to be 0.064 +- 0.001 (stat.) +- 0.007 (sys.). The momentum distribution of produced pi0s is measured and is found to be in good agreement with an expectation from the present knowledge of the neutrino cross sections.

1 data table

Ratio of single PI0 NC cross section to the total CC cross section. For reference the total CC cross section is calculated to be 1.1 x 10**-38 CM**2/nucleon averaged over the K2K neutrino beam energy.