Using data from Fermilab fixed-target experiment E791, we have measured particle-antiparticle production asymmetries for lambda zero, cascade minus, and omega minus hyperons in pi minus-nucleon interactions at 500 GeV/c. The asymmetries are measured as functions of Feynman-x (x_F) and pt^2 over the ranges of -0.12 GE x_F LE 0.12 and 0 GE pt^2 LE 4 (GeV/c)^2. We find substantial asymmetries, even at x_F = 0. We also observe leading-particle- type asymmetries which qualitatively agree with theoretical predictions.
No description provided.
No description provided.
No description provided.
The decay B0 -> J/psi K0_S is reconstructed with J/psi -> e+ e- or mu+ mu- and K0_S -> pi+ pi-. From the full ALEPH dataset at LEP1 of about 4 million hadronic Z decays, 23 candidates are selected with an estimated purity of 71%. They are used to measure the CP asymmetry of this decay, given by sin 2beta in the Standard Model, with the result sin 2beta = 0.84 +0.82-1.04 +-0.16. This is combined with existing measurements from other experiments, and increases the confidence level that CP violation has been observed in this channel to 98%.
Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates.
We present a measurement of asymmetries in the production of $\Lambda_c^+$ and $\Lambda_c^-$ baryons in 500 GeV/c $\pi^-$--nucleon interactions from the E791 experiment at Fermilab. The asymmetries were measured as functions of Feynman x ($x_F$) and transverse momentum squared ($p_T^2$) using a sample of $1819 \pm 62$ $\Lambda_c$'s observed in the decay channel $\Lambda_c \to pK^-\pi^+$. We observe more $\Lambda_c^+$ than $\Lambda_c^-$ baryons, with an asymmetry of $(12.7\pm3.4\pm1.3) %$ independent of $x_F$ and $p_T^2$ in our kinematical range $(-0.1 < x_F < 0.6$ and $0.0 < p_T^2 < 8.0 (GeV/c)^2$). This $\Lambda_c$ asymmetry measurement is the first with data in both the positive and negative $x_F$ regions.
No description provided.
No description provided.
We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C=2.27+-0.20(stat+syst),is about one standard deviation higher than the perturbative prediction.
No description provided.
Symmetric on energy jets.
No description provided.
The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.
The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.
The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.
The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.
Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.
Corrected multiplicites and dispersions of charged particles produced in hadronic decays from QQBAR events. The 200 GeV results are a weighted average fromthe 192, 196 and 200 GeV data.
Average multiplicities of identified hadrons produced in hadronic decays from QQBAR events.
Corrected multiplicites and dispersions of charged particles produced in fully hadronic W decays from two W 4Q and 2Q events.
A sample of 2.2 million hadronic Z decays, selected from the data recorded by the Delphi detector at LEP during 1994-1995 was used for an improved measurement of inclusive distributions of pi+, K+ and p and their antiparticles in gluon and quark jets. The production spectra of the individual identified particles were found to be softer in gluon jets compared to quark jets, with a higher multiplicity in gluon jets as observed for inclusive charged particles. A significant proton enhancement in gluon jets is observed indicating that baryon production proceeds directly from colour objects. The maxima, xi^*, of the xi-distributions for kaons in gluon and quark jets are observed to be different.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
Jet flavor tagging is used. (C=DUSCB), (C=DUSC), (C=UDS) mean quark-jet flavors. CONST(C=GLUON/JET) is the ratio gluon/jet for all charged particles. 'Y' events, mirror symmetric events, the angle between the most energetic jet and other two jets is 150 +- 15 deg.
Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.
The measured differential cross section for SIGMA- production.
The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.
The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.
The production rates and the inclusive cross sections of the isovector meson${\rm \pi^0}$, the isoscalar mesons$\eta$and
Inclusive cross section for PI0 production in hadronic events.
Inclusive cross section for ETA production in hadronic events.
Inclusive cross section for ETAPRIME production in hadronic events.
DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.
Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.
Integrated rates extrapolated to the full x range.