Measurement of $R_{\text{uds}}$ and $R$ between 3.12 and 3.72 GeV at the KEDR detector

Anashin, V.V. ; Aulchenko, V.M. ; Baldin, E.M. ; et al.
Phys.Lett.B 753 (2016) 533-541, 2016.
Inspire Record 1397002 DOI 10.17182/hepdata.76727

Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.

1 data table

Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.


Measurement of the $W+b$-jet and $W+c$-jet differential production cross sections in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 743 (2015) 6-14, 2015.
Inspire Record 1334689 DOI 10.17182/hepdata.73191

We present a measurement of the cross sections for the associated production of a $W$ boson with at least one heavy quark jet, $b$ or $c$, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

3 data tables

The $W + b$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $W + c$-jet production cross sections times $W \to \mu\nu$ branching fraction, ${\rm d}\sigma/{\rm d}p_T^{\rm jet}$.

The $\sigma(W+c)/\sigma(W+b)$ cross section ratio in bins of $c(b)$-jet $p_T$.


Inclusive cross sections, charge ratio and double-helicity asymmetries for $\pi^+$ and $\pi^-$ production in $p$$+$$p$ collisions at $\sqrt{s}$=200 GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.D 91 (2015) 032001, 2015.
Inspire Record 1315330 DOI 10.17182/hepdata.71403

We present the midrapidity charged pion invariant cross sections and the ratio of $\pi^-$-to-$\pi^+$ production ($5<p_T<13$ GeV/$c$), together with the double-helicity asymmetries ($5<p_T<12$ GeV/$c$) in polarized $p$$+$$p$ collisions at $\sqrt{s} = 200$ GeV. The cross section measurements are consistent with perturbative calculations in quantum chromodynamics within large uncertainties in the calculation due to the choice of factorization, renormalization, and fragmentation scales. However, the theoretical calculation of the ratio of $\pi^-$-to-$\pi^+$ production when considering these scale uncertainties overestimates the measured value, suggesting further investigation of the uncertainties on the charge-separated pion fragmentation functions is needed. Due to cancellations of uncertainties in the charge ratio, direct inclusion of these ratio data in future parameterizations should improve constraints on the flavor dependence of quark fragmentation functions to pions. By measuring charge-separated pion asymmetries, one can gain sensitivity to the sign of $\Delta G$ through the opposite sign of the up and down quark helicity distributions in conjunction with preferential fragmentation of positive pions from up quarks and negative pions from down quarks. The double-helicity asymmetries presented are sensitive to the gluon helicity distribution over an $x$ range of $\sim$0.03--0.16.

3 data tables

Invariant cross section for $\pi^+$ and $\pi^-$ hadrons, as well as the statistical and systematic uncertainties. In addition, there is an absolute scale uncertainty of 9.6$\%$.

Double-helicity asymmetries and statistical uncertainties for $\pi^+$ and $\pi^-$ hadrons. The primary systematic uncertainties, which are fully correlated between points, are $1.4\times10^{-3}$ from relative luminosity and a $^{+7.0\%}_{-7.7\%}$ scaling uncertainty from beam polarization.

Ratio of charged pion cross section, as shown in Fig.6.


Measurement of the differential $\gamma+2~b$-jet cross section and the ratio $\sigma$($\gamma+2~b$-jets)/$\sigma$($\gamma+b$-jet) in $p\bar{p}$ collisions at $\sqrt{s}$=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 737 (2014) 357-365, 2014.
Inspire Record 1296263 DOI 10.17182/hepdata.64151

We present the first measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the production of an isolated photon in association with at least two $b$-quark jets. The measurements consider photons with rapidities $|y^\gamma| < 1.0$ and transverse momenta $30 < p_{T}^{\gamma} < 200$~\GeV. The $b$-quark jets are required to have $p_T^{jet}>15$ GeV and $| y^{jet}| < 1.5$. The ratio of differential production cross sections for $\gamma+2~b$-jets to $\gamma+b$-jet as a function of $p_{T}^{\gamma}$ is also presented. The results are based on the proton-antiproton collision data at $\sqrt{s}=$1.96~\TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next-to-leading order perturbative QCD calculations as well as predictions based on the $k_{T}$-factorization approach and those from the SHERPA and PYTHIA Monte Carlo event generators.

3 data tables

The differential GAMMA+2BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The differential GAMMA+BJET production cross section, DSIG/DPT(GAMMA), in bins of PT(GAMMA).

The SIG(GAMMA 2BJET)/SIG(GAMMA BJET) cross section ratio in bins of PT(GAMMA).


Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

30 data tables

Average values of the number of participating nucleons (Npart), number of binary collisions (Ncoll), and the nuclear overlap function (TAA) for the centrality intervals used in the jet analysis.

Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 0-10%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.

Charged jet spectra using two cone radius parameters R = 0.2 and 0.3 and a leading track selection of pT > 0.15 GeV, for centrality 10-30%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.

More…

Mid-rapidity anti-baryon to baryon ratios in pp collisions at sqrt(s) = 0.9, 2.76 and 7 TeV measured by ALICE

The ALICE collaboration Abbas, E. ; Abelev, B. ; Adam, J. ; et al.
Eur.Phys.J.C 73 (2013) 2496, 2013.
Inspire Record 1232209 DOI 10.17182/hepdata.61965

The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi}^{-}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega}^{-}$ in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING-B, that are used to model the particle production in pp collisions. The energy dependence of $\bar{\rm p}/{\rm p}$, $\bar{\rm \Lambda}/{\rm \Lambda}$, $\rm\bar{\Xi}$$^{+}/{\rm \Xi^{-}}$ and $\rm\bar{\Omega}$$^{+}/{\rm \Omega^{-}}$, reaching values compatible with unity for $\sqrt{s} = 7$ TeV, complement the earlier $\bar{\rm p}/{\rm p}$ measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\alpha_{\rm {J}} \approx 0.5$, which are suppressed with increasing rapidity interval ${\rm \Delta} y$. Any significant contribution of an exchange not suppressed at large ${\rm \Delta} y$ (reached at LHC energies) is disfavoured.

20 data tables

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of pT.

The pbar/p ratio at sqrt(s) = 2.76 TeV as a function of rapidity.

The LambdaBar/Lambda ratio at sqrt(s) = 0.9 TeV as a function of pT.

More…

Measurement of the ratio of differential cross sections {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet) in ppbar collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 87 (2013) 092010, 2013.
Inspire Record 1210034 DOI 10.17182/hepdata.61314

We measure the ratio of cross sections, {\sigma}(ppbar -> Z + b jet)/{\sigma}(ppbar -> Z + jet), for associated production of a Z boson with at least one jet. The ratio is also measured as a function of the jet transverse momentum, jet pseudorapidity, Z boson transverse momentum, and the azimuthal angle between the Z boson and the closest jet for events with at least one b jet. These measurements use data collected by the D0 experiment in Run II of Fermilab's Tevatron ppbar Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of 9.7 fb$^{-1}$. The results are compared to predictions from next-to-leading order calculations and various Monte Carlo event generators.

4 data tables

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the jet transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the Z0 transverse momentum.

The ratio of (BJET + Z0)/(JET + Z0) production as a function of the JET pseudorapidity.

More…

Measurement of the inclusive differential jet cross section in pp collisions at sqrt{s} = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 722 (2013) 262-272, 2013.
Inspire Record 1210881 DOI 10.17182/hepdata.60430

The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.

2 data tables

Inclusive differential jet cross section for R=0.2 and R=0.4.

Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.


Measurement of the differential photon+ c-jet cross section and the ratio of differential photon+ c and photon+ b cross sections in proton-antiproton collisions at sqrt(s) = 1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 719 (2013) 354-361, 2013.
Inspire Record 1191428 DOI 10.17182/hepdata.61727

We present measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the associated production of a $c$-quark jet and an isolated photon with rapidity $|y^{\gamma}|< 1.0$ and transverse momentum $30 < p_{T}^{\gamma} < 300$ GeV. The $c$-quark jets are required to have $|y^{jet}| < 1.5$ and $p_{T}^{jet} >15$ GeV. The ratio of differential cross sections for photon+ c and photon+ b production as a function of $p_{T}^{\gamma}$ is also presented. The results are based on data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at $\sqrt{s}=$1.96 TeV. The obtained results are compared to next-to-leading order perturbative QCD calculations using various parton distribution functions, to predictions based on the $k_{T}$-factorization approach, and to predictions from the Sherpa and Pythia Monte Carlo event generators.

2 data tables

The differential cross section as a function of PT for the production of GAMMA+ Charmed JET in PBAR P collisions at a centre of mass energy of 1.96 TeV.

The ratio of the (GAMMA+ CJET) to (GAMMA+ BJET) cross section in bins of the GAMMA PT.


Measurement of the ratio of three-jet to two-jet cross sections in pp-bar collisions at sqrt(s) = 1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Lett.B 720 (2013) 6-12, 2013.
Inspire Record 1184629 DOI 10.17182/hepdata.61728

We present a measurement of the ratio of multijet cross sections in pp-bar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron Collider. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb-1 collected with the D0 detector. The ratio of the inclusive three-jet to two-jet cross sections, R3/2, has been measured as a function of the jet transverse momenta. The data are compared to QCD predictions in different approximations. Popular tunes of the PYTHIA event generator do not agree with the data, while SHERPA provides a reasonable description of the data. A perturbative QCD prediction in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects, gives a good description of the data.

4 data tables

The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 30 GeV.

The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 50 GeV.

The measured ratio of 3 to 2 jets as a function of the maximum jet PT for a minimum jet PT of 70 GeV.

More…