Neutral strange particle production in\(\bar v\) Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% forK0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% for\(\bar \Lambda \) and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties ofK0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.
No description provided.
No description provided.
No description provided.
The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.
Unfolded charged particle multiplicity distribution. The entry for N=2 is from the LUND 7.2 parton shower model.
Leading moments of the charged particle multiplicity. R2 is the second binomial moment given by MEAN(MULT(MULT-1))/(MEAN(MULT))**2.
The charge asymmetry of leptons from W-boson decay has been measured using p¯p data from the Collider Detector at Fermilab at √s =1.8 TeV. The observed asymmetry is well described by most of the available parton distributions.
Electrons in the central region.
Muons in the central region.
Plug electrons.
Hadronic charm production was investigated with a two-arm magnetic spectrometer. The experiment was triggered on muons from the semileptonic decay of charm particles in one arm while reconstructing the mass of the associatively produced partners in the other arm. An excess of 153±46 combinations above background for the neutral D→Kπ mode was observed. This corresponds to a model-dependent DD¯ production cross section of 41±12+15−11 μb per nucleon, where the first uncertainty is statistical and the second is systematic.
Cross sections based on (1-ABS(XF))**3 production model.
Cross section based on (1-ABS(XF))**3 production model.
We have measured the photon yield in lepton pair events recorded by the OPAL detector in a data sample corresponding to an integrated luminosity of 7.1 pb −1 at centre-of-mass energies between 88 GeV and 94 GeV. The results are compared to QED expectations for initial and final state photon radiation. No anomalous photon yield has been found, and stringent limits on the branching ratio for exotic radiative three body Z 0 decays into a photon and a pair of leptons are obtained. We also place limits on possible Z 0 decays into a photon and a resonance X with subsequent decays of X into a pair of leptons. Acollinear μ + μ − events with missing momentum along the beam direction are identified as events with hard initial state photon radiation and used to measure an average cross section of 15 ± 8 6 pb for e + e − annihilation into μ + μ − , in the so far untested range of centre-of-mass energies between 60 GeV and 84 GeV. This value is consistent with a cross section of 24 pb, expected from Z 0 and photon exchange.
No description provided.
We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.
Corrected for radiative effects and acceptance.
Unfolded charged particle multiplicity distribution for continuum events.
Unfolded charged particle multiplicity distribution for UPSILON(4S) events.
Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have observed parity violation in the decay Λ ± c → Λπ ± . We measure the coefficient of parity violation, α Λ c , to be −0.96±0.42. In addition, we measure σ BR ( Λ + c → Λπ + and σ BR ( Λ + c → Σ 0 π + ) to be, respectively, (2.2±0.3±0.4) pb and (2.0±0.7±0.4) pb.
No description provided.
Antiproton production cross sections have been measured for minimum bias and central Si+Al and Si+Au collisions at 14.6 A GeV c . The data presented cover the range of transverse momentum from 0.3 to 1.2 GeV c and lab rapidities from 1.1 to 1.7 units. The relative p π − and p K − yields are found to be the smallest for the heaviest system measured, central Si+Au collisions. For these collisions, the p π − ratio, determined from integrated yields for 1.1⩽ y ⩽1.7, is (0.84±0.07)×10 −3 . In the same rapidity interval, the average antiproton inverse m ⊥ slope is 141±14 MeV for central Si+Al and central Si+Au collisions.
Definition of the CENTRAL and MINIMUM BIAS events see text.
Definition of the CENTRAL and MINIMUM BIAS events see text.
We have measured the ratio of the strong coupling constants α s for bottom quarks and light quarks at the Z 0 resonance, in order to test the flavour independence of the strong interaction. The coupling strength α s has been determined from the fraction of events with three jets, measured for a sample of all hardronic events, and for inclusive muon and electron events. The b purity is evaluated to be 22% for the first data set and 87% for the inclusive lepton sample. We find α s ( b ) α s ( udsc ) =1.00± 0.05 ( stat. )±0.06 ( syst. ) .
No description provided.
We present a measurement of the inclusive jet cross section in p¯p collisions at √s =1.8 TeV at the Fermilab Tevatron using the Collider Detector at Fermilab. Good agreement is seen with the predictions of recent next-to-leading-order [O(αs3)] QCD predictions. The dependence of the cross section on clustering cone size is reported for the first time. An improved limit on Λc, a term characterizing possible quark substructure, is set at 1.4 TeV (95% C.L.).
Data are averaged over the pseudorapidity interval 0.1 to 0.7.