The cross section of the charged current process e − p → v e + hadrons is measured at HERA for transverse momenta of the hadron system larger than 25 GeV. The size of the cross section exhibits the W propagator.
No description provided.
During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.
Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.
Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.
E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).
The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D
No description provided.
The DSYS error is due to the error in the branching ratio.
The DSYS error is due to the error in the branching ratio.
Neutrino interactions in BEBC produce theDS** (2536) charmed strange meson. The mass of this state is 2534.2±1.2 MeV. The production rate is 0.011±0.005 per neutrino charged current interaction at a mean neutrino energy of 61 GeV. An earlier claim for another\(c\bar s\) bound state near 2565 MeV, produced in neutrino interactions, is not supported.
No description provided.
No description provided.
If quarks are composite particles then excited states are expected. We have searched in pp¯ collisions for excited quarks (q*) which decay to common quarks by emitting a W boson (q*→qW) or a photon (q*→qγ). The simplest model of excited quarks has been excluded for mass M*<540 GeV/c2 at 95% confidence level.
No description provided.
No description provided.
No description provided.
Measurements have been made of ΔσT for polarized neutrons incident on a polarized-proton target from 3.65 to 11.60 MeV. In the energy range near 10 MeV, ΔσT is very sensitive to the nucleon-nucleon tensor interaction. Comparison of the data to potential-model predictions indicate that the tensor interaction is weak, resulting in values of the 3S1−3D1 mixing parameter ε1 which are smaller than predicted by any nucleon-nucleon potential model. A smaller tensor force will bring the predictions of local potential models for the triton binding energy into closer agreement with the experimental value.
The measured cross section is the total cross section with the spins antiparallel minus the total cross section with the spins parallel.
We report on measurements of correlated\(b\bar b\) production in\(p\bar p\) collisions at\(\sqrt s = 630GeV\), using dimuon data to tag both theb and\(\bar b\) quarks. Starting from an inclusive dimuon sample we obtain improved cross-sections for single inclusive beauty production and confirm our earlier results on\(B^0 - \bar B^0\) mixing. From a study of\(b\bar b\) correlations we derive explicit cross-sections for semi-differential\(b\bar b\) production. We compare the measured cross-sections and correlations to\(\mathcal{O}\left( {\alpha _s^3 } \right)\) QCD predictions and find good quantitative agreement. From the measured angular distributions we establish a size-able contribution from higher order QCD processes with a significance of about seven standard deviations. A large nonperturbative contribution to these higher order corrections is excluded.
The first error is PT-dependent, and the second is PT-independent. Dimuons from different b-quarks.
The first error is PT-dependent, and the second is PT-independent. Dimuons from b chain decays (b --> c + mu, c --> mu).
Total cross-section for single b-quark production in the restricted rapidity range.
Multistrange baryon and antibaryon production is suggested to be a useful probe in the search for Quark-Gluon Plasma formation. We report the detection of an Ω − + Ω − signal in central S + W interactions at 200 A GeV/c and measure the ratio Ω − Ω − = 0.57±0.41 at central rapidity and p T >1.6 GeV/ c .
Note that this ratio is uncorrected for possible differences in the acceptance and efficiency for omega- and omegabar+ detection.
Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.
Single diffraction dissociation cross section.