We report on a measurement of the mean charged-particle multiplicity of jets in dijet events with dijet masses in the range 80–630GeV/c2, produced at the Tevatron in pp¯ collisions with s=1.8TeV and recorded by the Collider Detector at Fermilab. The data are fit to perturbative-QCD calculations carried out in the framework of the modified leading log approximation and the hypothesis of local parton-hadron duality. The fit yields values for two parameters in that framework: the ratio of parton multiplicities in gluon and quark jets, $r≡N_{partons}^{g−jet} / N_{partons}^{q−jet} = 1.7 \pm 0.3$, and the ratio of the number of charged hadrons to the number of partons in a jet, $K_{LPHD}^{charged} ≡ N_{hadrons}^{charged} / N_{partons} = 0.57 \pm 0.11$.
Measured values of inclusive charged particle multiplicity per jet for jets falling in restricted cones with opening angles 0.17, 0.28 and 0.47 radians. Note that the systematic errors are strongly correlated.
The PS185 experiment at LEAR/CERN has investigated strangeness production in antiproton-proton collisions with final states such as $\overline{\Lambda} \Lambda$, $\overline{\Sigma}^0 \Lambda + c.c$, $\overline{\Sigma^+} \Sigma^+$, $\overline{\Sigma^-} \Sigma^-$ and $K_S K_S$. Results are presented from a study of about 32,000 {$K_S K_S X$} events obtained at several antiproton momenta in the regions of 1.45 and 1.7 GeV/c. The $\overline{p} p \to K_S K_S \eta$ cross sections extracted at these momenta constitute the first measurement of this reaction in flight and are broadly consistent with expectations of a phase-space extrapolation of branching ratios from annihilation at rest.
No description provided.
The inclusive branching ratio for the process b -> tau nu X has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b -> tau nu X) = (2.78 +/- 0.18 +/- 0.51)% This measurement is consistent with the Standard Model expectation and puts a constraint of tan(beta) / M(H+/-) < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.
TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.
The process e+ e- -> e+ e- Z/gamma* is studied with the OPAL detector at LEP at a centre of mass energy of sqrt(s) = 189 GeV. The cross-section times the branching ratio of the Z/gamma* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 +/- 0.3 +/- 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 +/- 0.2 +/- 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables s-hat, t-hat, and u-hat are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess e gamma -> e Z/gamma* are derived.
Measured values of the cross section times the branching ratio for the (Z0/GAMMA*) decay into hadrons within the restricted kinematic limits.
Differential cross-section dsig_ee/dm_qq.
Differential cross-section dsigma_ee/dsqrt(shat).
We report the first observation of diffractive $J/\psi(\to \mu^+\mu^-)$ production in $\bar pp$ collisions at $\sqrt{s}$=1.8 TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum $p_T^{\mu}>2$ GeV/$c$ within the pseudorapidity region $|\eta|<$1.0, the ratio of diffractive to total $J/\psi$ production rates is found to be $R_{J/\psi}= [1.45\pm 0.25]%$. The ratio $R_{J/\psi}(x)$ is presented as a function of $x$-Bjorken. By combining it with our previously measured corresponding ratio $R_{jj}(x)$ for diffractive dijet production, we extract a value of $0.59\pm 0.15$ for the gluon fraction of the diffractive structure function of the proton.
Diffractive to total J/psi production ratio.
Ratio of diffractive to total J/psi rate, per unit of the fractional momentum loss of the leading (anti)proton, and as a function of x-Bjorken of the struck parton of the (anti)proton adjacent to the rapidity gap and participating in the J/psi production.
Gluon fraction of the diffractive structure function of the (anti)proton.
Characteristics of the hadronic final state of diffractive deep inelastic scattering events, ep -> eXp, were studied in the kinematic range 4 < M_X < 35 GeV, 4 < Q^2 < 150 GeV^2, 70 < W < 250 GeV and 0.0003 < x_pom < 0.03 with the ZEUS detector at HERA using an integrated luminosity of 13.8 pb^{-1}. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state, X, were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow and ``seagull'' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qqg states at the parton level.
Thrust distribution for a DIS hadronic final state mass between 11 and 17.8GeV.
Thrust distribution for a DIS hadronic final state mass between 17.8 and 27.7 GeV.
Sphericity distribution for a DIS hadronic final state mass between 11 and 17.8 GeV.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
Measured cross sections for omega production.
Angular distribution of the OMEGA in the overall centre-of-momentum frame. Statistical error only.
A measurement is presented of the cross section for D* meson production in diffractive deep-inelastic scattering for the first time at HERA. The cross section is given for the process ep -> eXY, where the system X contains at least one D* meson and is separated by a large rapidity gap from a low mass proton remnant system Y. The cross section is presented in the diffractive deep-inelastic region defined by 2< Q^2 < 100 GeV^2, 0.05 < y < 0.7, x_pom < 0.04, M_Y < 1.6 GeV and |t| < 1 GeV^2. The D* mesons are restricted to the range ptD* > 2 GeV and |\eta_D* | < 1.5. The cross section is found to be 246+-54+-56 pb and forms about 6% of the corresponding inclusive D* cross section. The cross section is presented as a function of various kinematic variables, including z_pom^obs which is an estimate of the fraction of the momentum of the diffractive exchange carried by the parton entering the hard-subprocess. The data show a large component of the cross section at low z_pom^obs where the contribution of the Boson-Gluon-Fusion process is expected to dominate. The data are compared with several QCD--based calculations.
The total D*+- production cross section for the given kinematic region. Also given is the ratio to the DIS*+- production cross section in the samekinematic region.
Cross section as a function of X(NAME=POMERON).
Cross section as a function of LOG10(BETA). BETA = X/X(NAME=POMERON).
The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 11.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.
The inclusive cross section for D*+- production. The second DSYS error is related to the changes in efficiency obtained by using different Monte Carlo generators and varying the model parameters.
Single differential visible cross section as a function of W.
Single differential visible cross section as a function of PT.
We report first results on elliptic flow of identified particles at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.
Differential elliptic flow for pions for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for protons + antiprotons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.
Differential elliptic flow for kaons for minimum-bias events, the systematic uncertainty for minimum-bias data is 13%.