Two measurements of B0 anti-B0 mixing

The CLEO collaboration Bartelt, John E. ; Csorna, S.E. ; Egyed, Z. ; et al.
Phys.Rev.Lett. 71 (1993) 1680-1684, 1993.
Inspire Record 354226 DOI 10.17182/hepdata.47247

We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.

4 data tables

No description provided.

Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.

Mixing parameter from tagged B0 events.

More…

Measurement of cross-section for gamma gamma ---> p anti-p

The CLEO collaboration Artuso, M. ; He, D. ; Goldberg, M. ; et al.
Phys.Rev.D 50 (1994) 5484-5490, 1994.
Inspire Record 358510 DOI 10.17182/hepdata.47137

A measurement of the cross section for γγ→pp¯ is performed at two-photon center-of-mass energies between 2.00 and 3.25 GeV. These results are obtained using e+e−→e+e−pp¯ events selected from 1.31 fb−1 of data taken with the CLEO II detector. The measured cross section is in reasonable agreement with previous measurements and is in excellent agreement with recent calculations based on a diquark model. However, leading order QCD calculations performed using the Brodsky-Lepage formalism are well below the measured cross section.

3 data tables

Data read from graph.

Data read from graph.

Data read from graph.


Measurement of two photon production of the chi(c2)

The CLEO collaboration Shelkov, V. ; Dominick, J. ; Sanghera, S. ; et al.
Phys.Rev.D 50 (1994) 4265-4271, 1994.
Inspire Record 359316 DOI 10.17182/hepdata.52343

The CLEO II detector is used to search for the production of χc2 states in two-photon interactions. We use the signature χc2→γJ/ψ→γl+l− with l=e,μ. Using 1.49 fb−1 of data taken with beam energies near 5.29 GeV, the two-photon width of the χc2 is determined to be Γ(χc2→γγ)=1.08±0.30(stat)±0.26(syst) keV, in agreement with predictions from perturbative QCD.

2 data tables

Results below were obtained usign J/psi from-factors in the two photon propogators, and assumes that only transversely polarized photons are significant inthe production of the CHI/C2(1P) state.

No description provided.


Two-Photon Production of Charged Pion and Kaon Pairs

The CLEO collaboration Dominick, J. ; Lambrecht, M. ; Sanghera, S. ; et al.
Phys.Rev.D 50 (1994) 3027-3037, 1994.
Inspire Record 372230 DOI 10.17182/hepdata.47104

A measurement of the cross section for the combined two-photon production of charged pion and kaon pairs is performed using 1.2~$\rm fb^{-1}$ of data collected by the CLEO~II detector at the Cornell Electron Storage Ring. The cross section is measured at invariant masses of the two-photon system between 1.5 and 5.0 GeV/$c^2$, and at scattering angles more than $53^\circ$ away from the $\gamma\gamma$ collision axis in the $\gamma\gamma$ center-of-mass frame. The large background of leptonic events is suppressed by utilizing the CsI calorimeter in conjunction with the muon chamber system. The reported cross section is compared with leading order QCD models as well as previous experiments. In particular, although the functional dependence of the measured cross section disagrees with leading order QCD at small values of the two-photon invariant mass, the data show a transition to perturbative behavior at an invariant mass of approximately 2.5 GeV/$c^2$. hardcopies with figures can be obtained by writing to to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

1 data table

There is an additional 10 pct point-to-point systematic error as well as the overall uncertainty given above.


New decay modes of the Lambda(c)+ charm baryon

The CLEO collaboration Ammar, R. ; Baringer, Philip S. ; Bean, A. ; et al.
Phys.Rev.Lett. 74 (1995) 3534-3537, 1995.
Inspire Record 392228 DOI 10.17182/hepdata.47094

We have observed five new decay modes of the charmed baryon Λc+ using data collected with the CLEO II detector. Four decay modes, Λc+→pK¯0η, Ληπ+, Σ+η, and Σ*+η, are first observations of final states with an η meson, while the fifth mode, Λc+→ΛK¯0K+, requires the creation of an ss¯ quark pair. We measure the branching fractions of these modes relative to Λc+→pK−π+ to be 0.25±0.04±0.04, 0.35±0.05±0.06, 0.11±0.03±0.02, 0.17±0.04±0.03, and 0.12±0.02±0.02, respectively.

5 data tables

Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).

Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).

Integrated luminosity of 3.25 fb-1 have used, which corresponds to about 4 million C CBAR events.. Here X=P(LAMBDA/C)/sqrt(Ebeam**2-M(LAMBDA/C)**2).

More…

Measurements of B ---> D(s)+ X decays

The CLEO collaboration Gibaut, D. ; Kinoshita, K. ; Pomianowski, P. ; et al.
Phys.Rev.D 53 (1996) 4734-4746, 1996.
Inspire Record 401599 DOI 10.17182/hepdata.47241

This paper describes new measurements from CLEO of the inclusive B→Ds+X branching fraction as well as the B+→Ds(*)+D¯(*)0 and B0→Ds(*)+D(*)− branching fractions. The inclusive branching fraction is B(B→Ds+X)=(12.11±0.39±0.88±1.38)% where the first error is statistical, the second is the systematic error, and the third is the error due to the uncertainty in the Ds+→φπ+ branching fraction. The branching fractions for the B→Ds(*)+D¯(*) modes are found to be between 0.9% and 2.4% and are significantly more precise than previous measurements. The sum of the B→Ds(*)+D¯(*) branching fractions is consistent with the results of fits to the inclusive Ds+ momentum spectrum. Factorization is used to arrive at a value for fDs, the Ds+ decay constant. © 1996 The American Physical Society.

1 data table

FORMFACTOR(NAME=FP,C=DECAY CONSTANT) is pseudoscalar meson decay constant. Three different methods are used: 1) C=MUNU: D/S+ --> MU+ NUMU, 2) C = ENU: B --> D/S+ D*BAR / B --> D*BAR E+ NU, and 3) C = PI : B --> D/S+ D*BAR / B0 - -> PI+(RHO+) D*BAR-. The F(D/S) is evaluated from B decay assuming the factorization.


Measurement of the direct photon spectrum in Upsilon(1S) decays.

The CLEO collaboration Nemati, B. ; Richichi, S.J. ; Ross, W.R. ; et al.
Phys.Rev.D 55 (1997) 5273-5281, 1997.
Inspire Record 425927 DOI 10.17182/hepdata.52340

Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: $R_{\gamma} \equiv \Gamma(\Upsilon(1S) \rightarrow \gamma gg)/\Gamma(\Upsilon(1S) \rightarrow ggg) = (2.75 \pm 0.04(stat.) \pm 0.15(syst.))%$. From this ratio, we have determined the QCD scale parameter $\Lambda_{\overline{MS}}$ (defined in the modified minimal subtraction scheme) to be $\Lambda_{\overline{MS}}= 233 \pm 11 \pm 59$ MeV, from which we determine a value for the strong coupling constant $\alpha_{s}(M_{\Upsilon(1S)}) = 0.163 \pm 0.002 \pm 0.014$, or $\alpha_{s}(M_{Z}) = 0.110 \pm 0.001 \pm 0.007$.

1 data table

The ALPHAS at MZ is extrapolation from M(UPSI).


Study of gluon versus quark fragmentation in Upsilon --> g g gamma and e+ e- --> q anti-q gamma events at s**(1/2) = 10-GeV.

The CLEO collaboration Alam, M.S. ; Athar, S.B. ; Ling, Z. ; et al.
Phys.Rev.D 56 (1997) 17-22, 1997.
Inspire Record 439530 DOI 10.17182/hepdata.47233

Using data collected with the CLEO II detector at the Cornell Electron Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for jet-jet masses less than 7 GeV.

1 data table

No description provided.


Lambda Antilambda production in two-photon interactions at CLEO.

The CLEO collaboration Anderson, S. ; Kubota, Y. ; Lattery, M. ; et al.
Phys.Rev.D 56 (1997) R2485-R2489, 1997.
Inspire Record 439745 DOI 10.17182/hepdata.47140

Using the CLEO detector at the Cornell $e~+e~-$ storage ring, CESR, we study the two-photon production of $\Lambda \overline{\Lambda}$, making the first observation of $\gamma \gamma \to \Lambda \overline{\Lambda}$. We present the cross-section for $ \gamma \gamma \to \Lambda \overline{\Lambda}$ as a function of the $\gamma \gamma$ center of mass energy and compare it to that predicted by the quark-diquark model.

3 data tables

No description provided.

No description provided.

No description provided.


Studies of the Cabibbo-suppressed decays D+ --> pi0 l+ nu and D+ --> eta e+ nu/e.

The CLEO collaboration Bartelt, John E. ; Csorna, S.E. ; Jain, V. ; et al.
Phys.Lett.B 405 (1997) 373-378, 1997.
Inspire Record 441553 DOI 10.17182/hepdata.47235

Using 4.8 fb$~{-1}$ of data taken with the CLEO II detector, the branching fraction for the Cabibbo-suppressed decay $D~+\to\pi~0\ell~+\nu$ measured relative to the Cabibbo favored decay $D~+\to\bar{K~0}\ell~+\nu$ is found to be $0.046\pm 0.014\pm 0.017$. Using $V_{cs}$ and $V_{cd}$ from unitarity constraints, we determine $| f_+~{\pi}(0)/f_+~K(0)|~2=0.9\pm 0.3\pm 0.3$ We also present a 90% confidence level upper limit for the branching ratio of the decay $D~+ \to \eta e~+\nu_e$ relative to that for $D~+ \to \pi~0 e~+\nu_e$ of 1.5.

1 data table

Formfactors for the D+ (D-) decay into pseudoscalar P. Charge conjugate states are implied. LEPTON+ means E+ or MU+. VCD and VCS are the elements of the CKM matrix (See R.M.Barnett et al (PDG), PR D54, 1 (1996)).