None
CENTRAL EVENTS: 10% OF SIG(GEOM).
None
PRELIMINARY DATA FOR CENTRAL EVENTS.
Single particle distributions of π ± , K ± , p , p and d near mid-rapidity from 450 GeV/c p A and 200 GeV/c per nucleon SA collisions are presented. Inverse slope parameters are extracted from the transverse mass spectra, and examined for indications of collective phenomena. Proton and antiproton yields are determined for different projectile-target combinations. First results from 160 GeV/c per nucleon PbPb collisions are presented.
No description provided.
PRELIMINARY DATA FOR CENTRAL EVENTS.
We report the first observations of Pontecorvo reactions of the type ¯pd →Xn. We fully reconstruct the outgoing meson and, for antiprotons stopped in liquid deuterium, we measure: BR(¯pd→π0)=(7.03±0.72)×10−6, BR(¯pd→ηn)=(3.19+0.48)×10−6, BR(¯pd→ωn)=(22.8+4.1)×10−6, BR(¯pd→η′n)14×10−6 (at 95% confidence level). Assuming charge independence, our result for¯ pd→π0n is compatible with measurements of the only other observed Pontecorvo reaction ¯pd → π−p. The experimental ratios between the above branching ratios are in fair agreement with both the statistical model and dynamical two-step models (assumingN¯ N annihilation into two mesons, with subsequent absorption of one meson on the remaining nucleon). This agreement suggests that there may be appreciable rates for Pontecorvo reactions producing final state mesons with masses above 1 GeV.
No description provided.
A sample of events enriched in bb̄ quark pairs was selected in the data recorded by the DELPHI experiment at LEP during 1992 and 1993, by the presence of secondary decay vertices from short-lived particles. Using this sample, the average multiplicities of K s 0 , K ± , p(p̄), Λ( Λ ) and of charged particles in bb̄ events have been measured, distinguishing the component from fragmentation and the component coming from the decay of b-hadrons. The measurement of the average charge multiplicity in bb̄ events was used to compute the mean fractional beam energy carried by the primary b-hadron, and the difference in charged particle multiplicity between bb̄ events and light quark (uū, dd̄, ss̄) events.
Event multiplicity in bottom events.
Differential cross section for charged particles in BOTTOM tagged hemispheres.
Differential cross section for charged particles in untagged hemispheres.
We have used 19 pb**-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to dijets. We exclude at 95% confidence level models containing the following new particles: axigluons with mass between 200 and 870 GeV, excited quarks with mass between 80 and 570 GeV, and color octet technirhos with mass between 320 and 480 GeV.
Here UNSPEC refers to axigluons, excited quarks, colour octet technirhos, ngauge bosons (W' and Z') and diquarks (D and Dc). M is the mass of the new particle (axigluon, q*, ...). Measurements are given to the 95% confidence limit.
J ψ and ψ′ production cross sections are studied for several proton induced reactions and in SU collisions, in the NA38 experiment, by measuring the resonances' decays in the muon pair channel. Whereas in p-A interactions the ψ ′/ J / ψ ratio remains constantin going from p-p and p-d collisions to p-W and p-U, with a mean value of 1.76% ± 0.04%, in the SU data it exhibits half of this value and decreases as centrality of the collision increases. Also studied are the differences between the γ π 0 ratio yields correlated with the J ψ mass range and other dimuon masses; no significant effect is seen.
DATA IN THE COLLINS-SOPPER FRAME, OF -0.5<COS(THETA)<0.5.
DATA IN THE COLLINS-SOPPER FRAME, OF -0.5<COS(THETA)<0.5.
No description provided.
A measurement of the proton structure function $F_{\!2}(x,Q~2)$ is reported for momentum transfer squared $Q~2$ between 4.5 $GeV~2$ and 1600 $GeV~2$ and for Bjorken $x$ between $1.8\cdot10~{-4}$ and 0.13 using data collected by the HERA experiment H1 in 1993. It is observed that $F_{\!2}$ increases significantly with decreasing $x$, confirming our previous measurement made with one tenth of the data available in this analysis. The $Q~2$ dependence is approximately logarithmic over the full kinematic range covered. The subsample of deep inelastic events with a large pseudo-rapidity gap in the hadronic energy flow close to the proton remnant is used to measure the "diffractive" contribution to $F_{\!2}$.
No description provided.
No description provided.
No description provided.
We present a comparison of the strong couplings of light ($u$, $d$, and $s$), $c$, and $b$ quarks determined from multijet rates in flavor-tagged samples of hadronic $Z~0$ decays recorded with the SLC Large Detector at the SLAC Linear Collider. Flavor separation on the basis of lifetime and decay multiplicity differences among hadrons containing light, $c$, and $b$ quarks was made using the SLD precision tracking system. We find: $\alpha_s{_{\vphantom{y}}}~{uds}/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 0.987 \pm 0.027({\rm stat}) \pm 0.022({\rm syst}) \pm 0.022({\rm theory})$, $\alpha_s{_{\vphantom{y}}}~c/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.012 \pm 0.104 \pm 0.102 \pm 0.096$, and $\alpha_s{_{\vphantom{y}}}~b/{\alpha_s{_{\vphantom{y}}}~{\rm all}} = 1.026 \pm 0.041 \pm 0.041\pm 0.030.$
No description provided.
Measured forward backward asymmetries.
Forward-backward s-quark asymmetries from the separate processes.
Final s-quark forward-backward asymmetries.