None
No description provided.
No description provided.
No description provided.
New data are presented on charged particle multiplicity distributions for non single-diffractive events produced at CM energies s = 200 and 900 GeV . The data were obtained at the CERN antiproton-proton collider operated in a new pulsed mode. The multiplicity distributions are very well described by a negative binomial distribution. The highest energy data show no sign of approaching scaling, confirming our earlier results on the breaking of KNO scaling. The energy variation of the average charged multiplicity can be fitted to a quadratic in ln s or a s 0.13 dependence.
Figure gives uncorrected multiplicity distributions. Here we give the corrected distributions. Data supplied by D. Ward.
Results for multiplicity moments based on negative binomial fit to corrected data. Errors reflect both statistical and systematic effects. Results from earlier data at 546 Gev cm energy are also given.
C moments for corrected data where CQ=<N**Q>/<N>**Q.
The properties of a sample of 172 charged intermediate vector bosons decaying in the (eνe) channel and 16 neutral intermediate vector bosons decaying in the (e+e-) channel are described. Masses, decay widths, decay angular distributions, and production cross-sections are given; they are shown to be in excellent agreement with the expectations of the SU2 ⊗ U1 standard model. A limit is put on the number of light-neutrino types Nν ≤ 10 at 90% c.l.
W CROSS SECTIONS ARE GIVEN IN ARNISON ET AL., NC 44A, 1.
No description provided.
Using the ARGUS detector at the DORIS II e+e− storage ring at DESY, we have obtained evidence for a new charmed resonance which decays into D*±(2010)π∓. The observed mass and width are 2420±6 MeV/c2 and 70±21 MeV/c2, respectively. The fragmentation function is found to be hard, as expected for a state containing a leading charm quark produced by nonresonant e+e− annihilation.
No description provided.
Estimated production cross section obtained by comparison with observed D*(2010) production rate.
None
No description provided.
No description provided.
No description provided.
An analysis of the three leptonic reactionse+e−→e+e−,μ+μ− andτ+τ− over a wide range of energy,\(12< \sqrt s< 46.78 GeV\) is presented. The data were obtained with the JADE detector at thee+e− storage ring PETRA. They are compared to predictions of electroweak theories, in particular the standard model. For the total cross-sections of all three reactions and for the differential cross-section of Bhabha scattering no deviation from QED is found over the entire energy range. The differential cross-sections of μ and τ pairs at high energies show the angular asymmetry predicted by electroweak interference. The axial-vector and vector weak coupling constant, sin2θW andMZ are determined and compared to other measurements. Finally, limits on deviations from the standard model are given.
No description provided.
No description provided.
No description provided.
From the measurement of e + e - pairs from the reaction p̄p→e + e - at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q 2 ⋍8.9( GeV c ) 2 and Q 2 ⋍12.5( GeV c ) 2 .
No description provided.
We have measured the production polarization of 265- and 310-GeV/c Σ− in the inclusive reaction p+Cu→Σ−+X using 400-GeV/c protons. The polarization was analyzed via the asymmetry in the weak decay Σ−→n+π−, and has typical values of +0.20 with respect to the direction of the cross product of the incident-proton and Σ− momenta. Using the spin-precession technique, we have determined the Σ− magnetic moment to be -1.23±0.03±0.03 nuclear magnetons, where the statistical and systematic errors are shown separately.
No description provided.
No description provided.
No description provided.
None
Background subtracted.
A high-statistics measurement has been made of the process e+e−→μ+μ− at s=29 GeV with the MAC detector at the SLAC storage ring PEP. The electroweak forward-backward charge asymmetry for a sample of approximately 16 000 events was measured to be Aμμ=−0.063±0.008±0.002. The ratio of the cross section to the lowest-order QED cross section was measured to be Rμμ=1.01±0.01±0.03. From these results the weak neutral axial-vector and vector couplings are determined to be gAegAμ=0.25±0.03±0.01 and gVegVμ=−0.02±0.03±0.09.
Data are fully corrected, including radiative effects.
Asymmetry determined from a two parameter fit to the angular distribution proportional to R*(1 + cos(theta)**2 + (8/3)*A*cos(theta)). R is then the total ratio relative to the lowest order QED cross section and A is the forward-backward asymmetry.
No description provided.