A total of 22 muon-neutrino-electron elastic-scattering events (νμe→νμe) have been observed in an exposure of the Fermilab 15-foot bubble chamber filled with a heavy neon-hydrogen mixture to a wide-band neutrino beam. The elastic-scattering cross section is measured to be 1.67±0.44×10−42Eν cm2 GeV−1. The value of the weak mixing angle (sin2θW) determined from this cross section, which is consistent with other measurements of this angle, is 0.20−0.05+0.06.
No description provided.
We present upper limits on the production of heavy leptons (L±) by neutrinos via the process νμ+Ne→L±+⋯, L±→e±+ν+ν¯. These limits imply that the L− and L+, if they couple in full strength to νμ, are heavier than 7.5 and 9 GeV, respectively. They also imply that the coupling strength νμ to the recently discovered 1.9-GeV heavy lepton τ is less than 0.025 of the normal νμ−μ coupling.
No description provided.
The production of μ−e+ dileptons by muon neutrinos is studied in a high-statistics bubble-chamber experiment. The experiment consisted of exposing the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mix to a wideband neutrino beam. In a total sample of 146 700±11 700 charged-current interactions, 461 events with an e+(Pe+>300 MeV/c) and a μ− are observed. The rate for μ−e+ dilepton production in measured to be (0.42±0.06)%. The energy dependence of this rate is presented. The kinematic distributions for the μ−e+ events are consistent with charm production and subsequent semileptonic decay. A total of 60 KS0 and 31 Λ0 decays were observed in the μ−e+ event sample. The measured rates for neutral-strange-particle production are 0.78±0.12 K0K¯0's and 0.19±0.04 Λ0's per μ−e+ event. Finally, rates for Λc+, D0, and D+ production in charged-current νμ interactions are derived. They are found to be (4−2+10)%, (1.7−0.7+0.5)%, and (1.3−0.5+0.4)%, respectively.
No description provided.
No description provided.
No description provided.
We report on a study of 15-GeV/c π+p interactions of all topologies using the SLAC 82-in. hydrogen bubble chamber. A description is given of the automatic pattern-recognition techniques used to measure the events. Cross sections are given for meson-resonance production in all topologies. Evidence is presented for a new resonance decaying to five pions. A measurement is made of the branching ratios of the g meson. A study is made of low-mass enhancements in the diffractively produced ρπ, fπ, and gπ channels, and a search is made for nondiffractive production of the A1 meson.
RESONANCE PRODUCTION CROSS SECTIONS.
We present the results of a detailed study of ω′(1675) production in the reaction π+p→Δ++π+π−π0 from a high-statistics bubble-chamber experiment at 15 GeV/c. We have measured the mass, width, and cross section as well as differential cross section and spin density matrix elements and compare then to A20 production in the same reaction. We show clear evidence for the resonant phase increase of the 3− (ρπ)fI=0 amplitude with ω′(1675) production.
In a broadband neutrino exposure of the Fermilab 15-ft bubble chamber, we observe the production of the Σc++(2426) charmed baryon followed by its decay to Λc+(2260) and π+. We find the mass of the Λc+ to be 2257±10 MeV and the m(Σc++)−m(Λc+) mass difference to be 168±3 MeV. Previously unseen two-body decay modes of the Λc+(2260) are observed.
No description provided.
A search for the production of charmed particles in 15-BeV/c π+p interactions has been carried out. The search was sensitive to charmed particles in the 1.5 to 4.0 BeV mass range, with lifetimes ≲10−11 sec, decaying into a strange particle with up to eight additional pions. No evidence for the production of such particles was found.
We have measured the cross-section ratio σ(νn)σ(νp) for both charged-current and neutral-current interactions at low energy. The experiment used the wide-band neutrino beam at Brookhaven National Laboratory. The detector was the 7-foot bubble chamber filled with a 62% neon-hydrogen mixture. For charged-current events we find that the ratio reaches an asymptotic value of 1.80±0.19 for neutrino energies above 1 GeV. For neutral-current events we measure the ratio to be 1.07±0.24. Both of these results are in agreement with the quark model.
No description provided.
This Letter compares neutral-current and charged-current scaling-variable distributions in neutrino-nucleon interactions induced by a narrow-band beam at Brookhaven National Laboratory; the x distribution of neutral-current events has been reported previously. The first measurement of flux-normalized neutrino cross sections from a narrow-band beam in the energy range Eν=3−9 GeV is also presented.
Measured charged current total cross section.
We have studied the spin-parity structure of the 3π system produced opposite a proton or Δ++ in π+p interactions at 15 GeV/c. Our results suggest that the broad enhancement at 1.1 GeV, traditionally associated with the A1, does not have the properties usually associated with a resonant state. We obtain similar results for the A3 and A4 enhancements.