$\tau$ Leptonic Branching Ratios and a Search for Goldstone Decay

The MARK-III collaboration Baltrusaitis, R.M. ; Becker, J. ; Blaylock, G. ; et al.
Phys.Rev.Lett. 55 (1985) 1842, 1985.
Inspire Record 215995 DOI 10.17182/hepdata.20284

Pairs of τ leptons produced at s=3.77 GeV have been studied in eμ, ee, and μμ final states. The leptonic branching ratios have been measured to be B(τ→eνν)=(18.2±0.7±0.5)% and B(τ→μνν)=(18.0±1.0±0.6)%. Limits have been set for the two-body decays τ→eG and τ→μG, where G is a light Goldstone boson.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of the cross-sections of the reactions e+ e- ---> gamma gamma and e+ e- ---> gamma gamma gamma at LEP

The OPAL collaboration Akwawy, M.Z. ; Alexander, G. ; Allison, J. ; et al.
Phys.Lett.B 257 (1991) 531-540, 1991.
Inspire Record 302587 DOI 10.17182/hepdata.29464

The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.

3 data tables match query

No description provided.

No description provided.

No description provided.


Measurement of dijet angular distributions at CDF

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 77 (1996) 5336-5341, 1996.
Inspire Record 423414 DOI 10.17182/hepdata.54980

We have used 106 pb~-1 of data collected in proton-antiproton collisions at sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular distributions in events with two jets in the final state. The angular distributions agree with next to leading order (NLO) predictions of Quantum Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at 95% confidence level (CL) a model of quark substructure in which only up and down quarks are composite and the contact interaction scale is Lambda_ud(+) < 1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6 TeV.

2 data tables match query

No description provided.

Di-jet angular ratio, defined as the number with CHI < 2.5 divided by the number with CHI between 2.5 and 5.


Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables match query

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

A Partial Wave Analysis of the ($K^+ K^- \pi^-$) System Produced in $\pi^- p \to K^+ K^- \pi^- p$ at 16-{GeV}/$c$

The Aachen-Bari-Bonn-CERN-Glasgow-Liverpool-Milan collaboration Armstrong, T.A. ; Baccari, B. ; Bonesini, M. ; et al.
Nucl.Phys.B 202 (1982) 1-20, 1982.
Inspire Record 169445 DOI 10.17182/hepdata.44589

The reaction π − p → K + K − π − p at 16 GeV/ c was studied in the CERN OMEGA spectrometer and a partial-wave analysis (PWA) of the low-mass (K + K − π − ) system (1.3–2.0 GeV) was performed. Only states in the unnatural spin-parity series produced by natural parity exchange are important and they approximately conserve t -channel helicity. The 1 + S K ∗ K wave dominates the low-mass (K + K − π − ) region. We observe an enhancement in 2 − P K ∗ K wave at a mass of 1.7 GeV, consistent with the decay of the A 3 resonance.

1 data table match query

TOTAL ACCEPTANCE CORRECTED CROSS SECTION.


Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables match query

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables match query

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

11 data tables match query

Average PT inside the max and min cone for cm energy 1800 GeV.

Data points read from plot.

Data points read from plot.

More…

Limits on quark - lepton compositeness scales from dileptons produced in 1.8-TeV p anti-p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 79 (1997) 2198-2203, 1997.
Inspire Record 443871 DOI 10.17182/hepdata.42186

The dilepton mass spectrum in pp¯→l+l−+X interactions is studied using dielectrons (ee) and dimuons (μμ) in 110pb−1 of data collected with the Collider Detector at Fermilab. The data are consistent with standard model predictions. The mass spectrum, being a probe for new physics, is examined for new interactions of quarks and leptons from a common composite structure. Assuming a contact interaction with the conventional coupling g02/4π=1, limits on chiral quark-electron and quark-muon compositeness scales in the range of 2.5 to 4.2 TeV are obtained.

2 data tables match query

Di-electron data and Standard Model event predicitions.

Di-muon data and Standard Model event predicitions.


Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables match query

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.