The differential cross sections of p¯p elastic scattering have been measured at incident beam momenta of 390, 490, 590, 690, and 780 MeV/c. The results are compared with the predictions of various N¯N potential models. None of these models completely explains the present results.
No description provided.
Legendre expansion coefficients.
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Data read from graph.. Additional overall systematic error 25%.. The Q**2 approx 0 datum is deduced from the earlier TASSO paper, Brandelik et al, Phys. Lett. 97B(1980)448, (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1151> RED = 1151 </a>) on rho0 rho0 production.
Polarization parameters for the π − p → π 0 n charge exchange scattering have been measured at eight beam momenta between 1965 and 4220 MeV/ c using two different experimental set-ups. The angular range covered is −0.90 < cos θ π ∗ < 0.95 at the five momenta of 1965, 2168, 2360, 2566 and 2960 MeV/ c , where θ π ∗ is the emission angle of the π 0 meson in the c.m.s.. For three momenta of 2770, 3490 and 4220 MeV/ c , the measurements cover the forward angles of 0.1 < cos θ π ∗ < 1.0 . The results are compared with the predictions of π N partial wave analyses.
Polarisation measurements from SETUP1. Errors are statistical only.
Polarisation measurements from SETUP2. Errors are statistical only.
Legendre polynomial coefficients for fit to differential cross section data.
Precise measurements of the differential cross sections on the π − p→ π 0 n charge exchange scattering have been performed at six incident beam momenta of 1969, 2172, 2370, 2569, 2767 and 2965 MeV/ c covering a wide angular range of −0.95 < cos θ π ∗ < 0.95, where θ π ∗ is an emission angle of π 0 meson in the c.m.s. The results are compared with predictions of recent partial wave analyses.
Total cross sections obtained by fitting the Legendre polynomials to the DCS data.
Statistical errors only. Cos(theta) bin width is +- 0.025.
The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Measurements of the semileptonic weak-neutral-current reactions νμp→νμp and ν¯μp→ν¯μp are presented. The experiment was performed using a 170-metric-ton high-resolution target detector in the BNL wide-band neutrino beam. High-statistics samples yield the absolute differential cross sections dσ(νμp)/dQ2 and dσ(ν¯μp)/dQ2. A measurement of the axial-vector form factor GA(Q2) is also presented. The results are in good agreement with the standard model SU(2)×U(1). The weak-neutral-current parameter sin2thetaW is determined to be sin2θW=0.220±0.016(stat)−0.031+0.023(syst).
Errors contain both statistics and systematics, except for additional overall normalisation error given above. Neutrino energy is 0 to 5 GeV with peak at 0.8 Gev.
The reactione+e−→e+e− A2 (1320) has been observed by detecting the decayA2→π+,π-π0. The two-photon width of theA2 has been measured to be Г(A2→γγ)=(0.09±0.27 (stat)±0.16 (syst)) keV. The cross section σ(γγ→π+,π-π0 has been determined outside theA2 resonance region.
Data read off a graph.
The SATURNE II polarized proton beam and the Saclay frozen spin polarized proton target were used to measure the total cross section difference Δσ T = −2 σ 1 tot at 26 energies between 0.43 and 2.4 GeV. Here Δσ T is the total cross section difference for transverse beam and target spins parallel and antiparallel, respectively, and σ 1tot is one of spin-dependent terms in the total cross section σ tot . The energy dependence of Δσ T below 1 GeV shows similar structures as for Δσ L . An additional minimum appears at about 1.3 GeV, which involves a structure in singlet spin partial waves.
Errors contain both statistics and systematics.
Vector meson production is studied in the reaction γγ→K+K−π+π−. A clear Φ(1020) signal is seen in theK+K− mass distribution and aK*0 (890) signal is visible in theK±π∓ one. Both do not seem to be strongly correlated with quasi two body final states. Cross sections for the processes γγ→K+K−π+π−, γγ→Φπ+π−, γγ→K+0K±π∓ and upper limits for the production of Φp, ΦΦ andK*0\(\overline {K^{ * 0} } \) are given as function of the invariant γγ mass.
No description provided.
First data point is sum of (K* K PI) and (K* AK*).
Non resonant phase space.