The neutral π0 and η mesons are studied in 197Au−197Au collisions at an incident energy of 800AMeV, substantially below the threshold for η production in N−N collisions. While the gross π0 multiplicity increases almost linearly with the number of participant nucleons, the multiplicities of η and hard π0 mesons show a stronger than linear dependence. The nonlinearity is governed by the average transverse-mass excess 〈mt〉−(s−2mN) of the mesons and is insensitive to their final-state interaction in the nuclear medium.
No description provided.
No description provided.
No description provided.
The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.
The multiplicity moment MULT as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment DISPERSION as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
The multiplicity moment R2 as a function of the mass of the charged hadron system in the full phase space and separately in the forward and backward hemispheres.
In a joint effort the CERES/NA45 and TAPS collaborations have measured low-mass electron pairs in p–Be and p–Au collisions at 450 GeV/c at the CERN SPS. In the range covered up to ≈ 1.5 GeV/c2 the mass spectra from p–Be and p–Au collisions are well explained by electron pairs from decays of neutral mesons. For p–Au our result is new. For p–Be, the simultaneously measured electron pair inclusive pair spectrum in which instrumental uncertainties are highly reduced. We confirm the earlier finding of HELIOS-1 with significantly reduced systematic uncertainties of 23% in the mass range below 450 MeV/c2, and of 28% in the mass range above 750 MeV/c2 at 90% confidence limit. Any unconventional source of electron pairs is limited by these error margins as the percentage fraction of the hadronic contribution.
Relative production cross sections.
K − /K + and p ¯ / p ratios measured in 158 A·GeV Pb+Pb collisions are shown as a function of transverse momentum P T and centrality in top 8.5% central region. Little centrality dependence of the K − / K + and p ¯ / p ratios is observed. The transverse mass m T distribution and dN/dy of K + , K − , p and p ¯ around mid-rapidity are obtained. The temperature T ch and the chemical potentials for both light and strange quarks (μ q , μ s ) at chemical freeze-out are determined by applying simple thermodynamical model to the present data. The resultant μ q , μ s and T ch are compared with those obtained from similar analysis of SPS S+A and AGS Si+A data. The chemical freeze-out temperature T ch at CERN energies is higher than thermal freeze-out temperature T fo which is extracted from m T distribution of charged hadrons. At AGS energies T ch is close to T fo .
Data obtained from the fit of MT spectra.
Data obtained from the fit of MT spectra.
The transverse momentum and rapidity distributions of net protons and negatively charged hadrons have been measured for minimum bias proton-nucleus and deuteron-gold interactions, as well as central oxygen-gold and sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net protons at midrapidity in central nucleus-nucleus collisions increases both with target mass for sulphur projectiles and with the projectile mass for a gold target. The shape of the rapidity distributions of net protons forward of midrapidity for d+Au and central S+Au collisions is similar. The average rapidity loss is larger than 2 units of rapidity for reactions with the gold target. The transverse momentum spectra of net protons for all reactions can be described by a thermal distribution with `temperatures' between 145 +- 11 MeV (p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The multiplicity of negatively charged hadrons increases with the mass of the colliding system. The shape of the transverse momentum spectra of negatively charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and central nucleus-nucleus collisions. The mean transverse momentum is almost constant in the vicinity of midrapidity and shows little variation with the target and projectile masses. The average number of produced negatively charged hadrons per participant baryon increases slightly from p+p, p+A to central S+S,Ag collisions.
No description provided.
No description provided.
The value YRAP = 4PI is the extrapolation for 4PI acceptance.
Inclusive $K^0$ and $\Lambda$ photoproduction has been investigated at HERA with the H1 detector at an average photon-proton center of mass energy of 200 GeV in the transverse momentum range 0.5 <p_t <5 GeV. The production rates as a function of $p_t$ and center of mass rapidity are compared to those obtained in deep inelastic scattering at $\av{Q^2}=23 GeV^2$. A similar comparison is made of the rapidity spectra of charged particles. The rate of strangeness photoproduction is compared with $p\bar p$ measurements. The observations are also compared with next-to-leading order QCD calculations and the predictions of a Monte Carlo model.
Additional systematic uncertainty given above.
Additional systematic uncertainty given above.
Additional systematic uncertainty given above.
Semi-inclusive triple differential multiplicity distributions of positively charged kaons have been measured over a wide range in rapidity and transverse mass for central collisions of $^{58}$Ni with $^{58}$Ni nuclei. The transverse mass ($m_t$) spectra have been studied as a function of rapidity at a beam energy 1.93 AGeV. The $m_t$ distributions of K^+ mesons are well described by a single Boltzmann-type function. The spectral slopes are similar to that of the protons indicating that rescattering plays a significant role in the propagation of the kaon. Multiplicity densities have been obtained as a function of rapidity by extrapolating the Boltzmann-type fits to the measured distributions over the remaining phase space. The total K^+ meson yield has been determined at beam energies of 1.06, 1.45, and 1.93 AGeV, and is presented in comparison to existing data. The low total yield indicates that the K^+ meson can not be explained within a hadro-chemical equilibrium scenario, therefore indicating that the yield does remain sensitive to effects related to its production processes such as the equation of state of nuclear matter and/or modifications to the K^+ dispersion relation.
No description provided.
We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.
Determination of alpha_s.
Multiplicity and higher moments.
Thrust distribution.
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.
mean values for event shape variables.
Integral of event shape distribution over the specified interval.
Integral of event shape distribution over the specified interval.