Measurements of the double differential cross sections for ππ and pπ production in pp collisions at the CERN ISR are presented for 5 c.m. energies s = 22, 30, 44, 53, 62 GeV . Charge and transverse momentum correlations are also reported.
Transverse momentum distributions of λ o , λ o , and K o , produced in pp collisions at x = 0, have obtained at the CERN ISR. The K o yield is in agreement with published K + , K − results, obtained at this centre-of-mass energy (√ s ≈44 GeV). The results on λ o and λ o production obtained in this experiment are compared with results obtained at lower centre-of-mass energies.
No description provided.
No description provided.
No description provided.
The production of electron-positron pairs of masses below 1200 MeV/ c 2 and of transverse momentum above 1.8 GeV/ c has been studied in pp collisions at √ s = 53 and 63 GeV. The cross section for ϱ, ω, and φ production are presented. The continuum below 600 MeV/ c 2 is consistent with origination from Dalitz decays of η and ω mesons and from semileptonic decay of D and D mesons.
No description provided.
In an experiment performed at the CERN Intersecting Storage Rings (ISR), 11 e + e − pairs of high invariant mass value (> 2.5 GeV/c 2 ) have been observed. Of these events, 9 can be interpreted as arising from the reaction p + p → J (3.1) + anything. the cross-section for this reaction is estimated and compared with the result obtained at lower centre-of-mass energies.
No description provided.
abstract only
No description provided.
No description provided.
No description provided.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
The inclusive production of π and η mesons at 90° from proton-proton collisions has been measured at the CERN ISR at centre-of-mass energies between 23.5 and 62.4 GeV. The momentum correlation of charged particles emitted together with a large transverse momentum pion has also been studied, using two magnetic spectrometers each centred at 90°.
Measurements are presented of the inclusive π 0 production cross section, in the transverse momentum range 2.3 ⪅ p T ⪅4.5 GeV/c, for dd and dp interactions at total c.m. energies of √ s = 52.7 GeV and √ s = 63.2 GeV and for pp interactions at √ s = 52.7 GeV. The produced π 0 's are detected by identifying both protons from the decay π 0 → γγ . As in pp interactions, the data can be adequately described by a p T −n ƒ(x T ) dependence with n ≌ 8 . The data are approximately consistent with the expectations of free nucleon scattering. No significant differenceare observed in either the charged or the neutral particle distributions associated with π 0 , for dd, dp and pp interactions.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.