The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
The cross section of the process $e^+e^-\to \pi^+\pi^-\pi^0$ was measured in the Spherical Neutral Detector (SND) experiment at the VEPP-2M collider in the energy region $\sqrt[]{s}$ below 980 MeV. This measurement was based on about $1.2 \times 10^6$ selected events. The obtained cross section was analyzed together with the SND and DM2 data in the energy region $\sqrt[]{s}$ up to 2 GeV. The $\omega$-meson parameters: $m_\omega=782.79\pm 0.08\pm 0.09$ MeV, $\Gamma_\omega=8.68\pm 0.04\pm 0.15$ MeV and $\sigma(\omega\to 3\pi)=1615\pm 9\pm 57$ nb were obtained. It was found that the experimental data cannot be described by a sum of only $\omega$, $\phi$, $\omega^\prime$ and $\omega^{\prime\prime}$ resonances contributions. This can be interpreted as a manifestation of $\rho\to 3\pi$ decay, suppressed by $G$-parity, with relative probability $B(\rho\to 3\pi) = (1.01\pm^{0.54}_{0.36}\pm 0.034) \times 10^{-4}$.
We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.
The cross section of the process e+e−→π+π−π0 has been measured in the c.m. energy range 984–1060 MeV with the CMD-2 detector at the VEPP-2M collider. The obtained value of Br(ϕ→e+e−)Br(ϕ→π+π−π0)=(4.51±0.16±0.11)×10−5 is in good agreement with the previous measurements and has the best accuracy. Analysis of the Dalitz plot was performed. The contributions of the dominant ϕ→ρπ mechanism as well as of a small direct ϕ→3π amplitude were determined.
Radiative decays of the $\phi$ meson have been studied using a data sample of about 19 million $\phi$ decays collected by the CMD-2 detector at VEPP-2M collider in Novosibirsk. From selected $e^+e^-\to\pi^{0}\pi^{0}\gamma$ and $e^+e^-\to\eta\pi^{0}\gamma$ events the following model independent results have been obtained: \par $Br(\phi\to\pi^{0}\pi^{0}\gamma) = (0.92\pm 0.08\pm0.06)\times10^{-4}$ for $M_{\pi^{0}\pi^{0}}>700$ MeV, \par $Br(\phi\to\eta\pi^{0}\gamma) = (0.90\pm 0.24\pm 0.10)\times10^{-4}$. It is shown that the intermediate mechanism $f_{0}(980)\gamma$ dominates in the $\phi\to\pi^{0}\pi^{0}\gamma$ decay and the corresponding branching ratio is \par $Br(\phi\to f_{0}(980)\gamma)=(2.90\pm 0.21\pm1.54)\times10^{-4}$. The systematic error is dominated by the possible model uncertainty. \par Using the same data sample the upper limit has been obtained for the P- and CP-violating decay of $\eta$ at 90% CL: \par $Br(\eta\to\pi^{0}\pi^{0}) < 4.3\times10^{-4}$ >.
The $e^+e^- \to \omega \pi^0 \to \pi^0 \pi^0 \gamma$ process was investigated in the SND experiment at the VEPP-2M collider. A narrow energy interval near the $\phi$-meson was scanned. The observed cross-section reveals, at the level of three standard deviation, the interference effect caused by $\phi \to \pi^0\pi^0\gamma$ decay. The cross-section parameters, as well as the real and imaginary parts of the $\phi$-meson related amplitude, were measured.
Results of the study of the e+e-->pi0 gamma process with SND detector at VEPP-2M collider in the c.m.s. energy range sqrt(s)=0.60-0.97 GeV are presented. Using 36513 selected events corresponding to a total integrated luminosity of 3.4 pb^-1 the e+e-->pi0 gamma cross section was measured. The energy dependence of the cross section was analyzed in the framework of the vector meson dominance model. The data are well described by a sum of phi,omega,rho0->pi0 gamma decay contributions with measured decay probabilities: Br(omega->pi0 gamma)=(9.34+-0.15+-0.31)% and Br(rho0->pi0 gamma)=(5.15+-1.16+-0.73)*10^-4 . The rho-omega relative interference phase is phi(rho,omega}=(-10.2+-6.5+-2.5) degree.
The e+e- -> pi0 pi0 gamma process was studied in the SND experiment at VEPP-2M e+e- collider in the energy region 0.60-0.97 GeV. From the analysis of the energy dependence of measured cross section the branching ratios B(omega -> pi0 pi0 gamma)= (6.6 +1.4-0.8(stat) +-0.6(syst))x10^-5 and B(rho -> pi0 pi0 gamma)=(4.1 +1.0-0.9(stat) +-0.3(syst))x10^-5 were obtained.
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized $p^\uparrow+p$ collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons. This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The new dataset corresponds to 25 pb$^{-1}$ integrated luminosity of $p^\uparrow+p$ collisions at $\sqrt{s}=500$ GeV, an increase of more than a factor of ten compared to our previous measurement at $\sqrt{s}=200$ GeV. Non-zero asymmetries sensitive to transversity are observed at a $Q^2$ of several hundred GeV and are found to be consistent with the former measurement and a model calculation. %we observe consistent with the former measurement are observed.} We expect that these data will enable an extraction of transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers where subleading effects are suppressed.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p+p, d+Au, Cu+Cu and Au+Au collisions at sqrt(S_NN)=200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R_AA for Au+Au and Cu+Cu, and R_dA for d+Au collisions, studied as a function of transverse momentum (1<p_T<7 GeV/c) and centrality. In central and mid-central Au+Au collisions, the R_AA of phi exhibits a suppression relative to expectations from binary scaled p+p results. The amount of suppression is smaller than that of the neutral pion and the eta meson in the intermediate p_T range (2--5 GeV/c); whereas at higher p_T the phi, pi^0, and eta show similar suppression. The baryon (protons and anti-protons) excess observed in central Au+Au collisions at intermediate p_T is not observed for the phi meson despite the similar mass of the proton and the phi. This suggests that the excess is linked to the number of constituent quarks rather than the hadron mass. The difference gradually disappears with decreasing centrality and for peripheral collisions the R_AA values for both particles are consistent with binary scaling. Cu+Cu collisions show the same yield and suppression as Au+Au collisions for the same number of N_part. The R_dA of phi shows no evidence for cold nuclear effects within uncertainties.