The inclusive production cross sections of the charmed mesons D^0, D^+, D_s^+ and D^{*+} have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman's x variable are given for the central rapidity region and for transverse momenta up to $\pT=3.5$ GeV/$c$. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.
Cross sections (micro barns) in the visible range (-0.15<x_F<0.05).
Cross sections (micro barns) extrapolated to the total phase space.
Cross sections(micro barns) for particles production in the visible range (-0.15<x_F<0.05).
We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
<p>Charged hadron spectra for centrality selected d+Au collisions.</p>
Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.
Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.
Differential cross section DSIG/DQ**2 in bins of Q**2 .
Differential cross section DSIG/DX in bins of X .
Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .
Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb^-1. The results are presented for jets with transverse energy E_T^jet>6 GeV and pseudorapidity |eta^jet|<2.4, in the kinematic region given by the virtuality of the photon Q^2<1 GeV^2 and the inelasticity 0.2
Cross section D(SIG)/M(P=4_5_6) as a function of M(P=4_5_6) .
Cross section D(SIG)/M(P=4_5_6_7) as a function of M(P=4_5_6_7) .
Cross section D(SIG)/X(C=GAMMA,OBS) as a function of X(C=GAMMA,OBS) in two jet invariant mass regions, 25 to 50 and > 50 GeV .
Beam asymmetry and differential cross section for the reaction gamma+p->eta+p were measured from production threshold to 1500 MeV photon laboratory energy. The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0, were analyzed. The full set of measurements is in good agreement with previously published results. Our data were compared with three models. They all fit satisfactorily the results but their respective resonance contributions are quite different. The possible photoexcitation of a narrow state N(1670) was investigated and no evidence was found.
Measured beam asymmetry at photon energy 724 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 761 MeV as a function of the ETA centre of mass angle.
Measured beam asymmetry at photon energy 810 MeV as a function of the ETA centre of mass angle.
We have searched for exclusive 2-photon production in proton-antiproton collisions at sqrt{s} = 1.96 TeV, using 532/pb of integrated luminosity taken by the Run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E_T > 5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gamma-gamma, pi0-pi0, or eta-eta production. The probability that other processes fluctuate to 3 events or more is 1.7x10^-4. An upper limit on the cross section of p+pbar --> p+gamma-gamma+pbar is set at 410 fb with 95% confidence level.
Upper limit on the cross section.
The cross section for e^+e^- to pi^+pi^-J/psi between 3.8 and 5.5 GeV/c^2 is measured using a 548 fb^{-1} data sample collected on or near the Upsilon(4S) resonance with the Belle detector at KEKB. A peak near 4.25 GeV/c^2, corresponding to the so called Y(4260), is observed. In addition, there is another cluster of events at around 4.05 GeV/c^2. A fit using two interfering Breit-Wigner shapes describes the data better than one that uses only the Y(4260), especially for the lower mass side of the 4.25 GeV enhancement.
Measured cross section. Statistical errors only.
We present a measurement of the ttbar pair production cross section in ppbar collisions at sqrt(s) = 1.96 TeV utilizing approximately 425 pb-1 of data collected with the D0 detector. We consider decay channels containing two high pT charged leptons (either e or \mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e\mu, ee, or \mu\mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/-1.4(stat} +/- 1.0(syst) pb.
TOP TOPBAR production cross section for top quark mass 175 GeV.
TOP TOPBAR production cross section for the current Tevatron average top quark mass 170.9 GeV.. Error contains both statistics and systematics.
We report the measurements of the t anti-t production cross section and of the top quark mass using 1.02 fb^-1 of p anti-p data collected with the CDFII detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma_{tt}=8.3+-1.0(stat.)+2.0-1.5(syst.)+-0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0+-2.2(stat.)+-4.8(syst.) GeV/c^2 is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.
Total cross section measurement. The second DSYS error is the uncertainty on the luminosity.