The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Total cross section for P PBAR production at a mean centre-of-mass energy of 197 GeV.
The cross section as a function of W for ABS(COS(THETA)) < 0.6.
The differential cross section as a function of COS(THETA*) for three W ranges.
Using the upgraded Beijing Spectrometer (BESII), we have measured the total cross section for $e^+e^-$ annihilation into hadronic final states at center-of-mass energies of 2.6, 3.2, 3.4, 3.55, 4.6 and 5.0 GeV. Values of $R$, $\sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$, are determined.
Data are corrected for acceptance and radiative effects.
A search is performed for the production of the ψ(2S) in e+e− annihilation at a center-of-mass energy of 4.03 GeV using the BES detector operated at the Beijing Electron Positron Collider (BEPC). The kinematic features of the reconstructed ψ(2S) signal are consistent with its being produced only in association with an energetic photon resulting from initial state radiation (ISR). Limits are placed on ψ(2S) production from the decay of unknown charmonia or metastable hybrids that might be produced in e+e− annihilations at 4.03 GeV. Under the assumption that the observed cross section for ψ(2S) production is due entirely to ISR, the partial width Γee of the ψ(2S) is measured to be 2.07±0.32keV.
PSI(UNSPEC) is considered as a new 3D2 charmonium state. CHI/C(UNSPEC) is considered as any unknown charmonium state. EXOTIC is considered as a metastable hybrid.
The isoscalar structure functions xF_3 and F_2 are measured as functions of x averaged over all Q~2 permissible for the range 6 to 28 GeV of incident (anti)neutrino energy. With the measured values of xF_3, the value of the Gross-Llewellyn Smith sum rule is found to be $\int_{0}~{1}{F_3 dx} = 2.13\pm0.38 (stat)\pm 0.26 (syst)$. The QCD analysis of xF_3 provides $\Lambda_{\overline{MS}} =358 \pm 59 MeV$ . The obtained value of the strong interaction constant $\alpha_S (M_Z)=0.120~{+3}_{-4}$ is larger than most of the deep inelastic scattering results.
The value of F2 is extracted with R = 0. The difference F2(C=R=.1)-F2(C=R=0.) is also presented.
None
No description provided.
No description provided.
The results of total cross section measurements for theνμ,\(\bar \nu _\mu\) interactions with isoscalar target in the 3 – 30 GeV energy range have been presented. The data were obtained with the IHEP-JINR Neutrino Detector in the “natural” neutrino beams of the U-70 accelerator. Neutrino fluxes were obtained by averaging the spectra, based on the calculations with the use of the experimental data on secondary particle yields from the target and muon fluxes measurements in 9 gaps of the muon filter, as well as the spectra determined from quasi-elastic events and spectra defined by extrapolating differential distributiondσ/dy in the regiony=0. The significant deviation from the linear dependence forσtot versus neutrino energy is determined in the energy range less than 15 GeV.
No description provided.
No description provided.