Measurement of the top quark mass using a profile likelihood approach with the lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Eur.Phys.J.C 83 (2023) 963, 2023.
Inspire Record 2629755 DOI 10.17182/hepdata.127993

The mass of the top quark is measured in 36.3 fb$^{-1}$ of LHC proton-proton collision data collected with the CMS detector at $\sqrt{s}$ = 13 TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables to extract the top quark mass. The top quark mass is measured to be 171.77 $\pm$ 0.37 GeV. This approach significantly improves the precision over previous measurements.

2 data tables

Fit values for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1.

Covariance matrix for the top quark mass value and the nuisance parameters corresponding to the different uncertainty sources. All nuisance parameters have a prefit uncertainty of 1. The (statistical) uncertainty in mTop in the matrix includes the contributions from limited simulation sample sizes.


Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2022) 067, 2022.
Inspire Record 2618188 DOI 10.17182/hepdata.106058

A search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016–2018 and corresponding to an integrated luminosity of 138 fb−1. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W’ bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W’ boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak W parameter, are presented using LHC data for the first time. These results together with those from the direct W’ resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements.

26 data tables

Product of signal selection efficiency and acceptance as a function of resonance mass for a SSM WPRIME decaying to electron or muon plus neutrino.It is calculated as the number of WPRIME signal events passing the selection process over the number of generated events. In the selection process there is no requirement on a minimum $M_T$ applied. The SSM WPRIME signal samples have been generated with PYTHIA 8.2. More details in paper

Observed and expected number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for selected values of $M_T$ thresholds. The statistical and systematic uncertainties are added in quadrature providing the total uncertainty.

Observed and expected-from-SM number of events in the electron and muon channels, collected during three years (2016, 2017, and 2018), for two steps in the selection procedure: 1) one high-quality high-$p_T$ lepton with $p_T$ > 240(53) GeV for E(MU), and no other lepton in the event, with $M_T$ > 400(120) GeV for events with E(MU). 2) additionally the ratio of the lepton $p_T$ and $p_T^{miss}$ must be 0.4 < $p_T$/$p_T^{miss}$ < 1.5 and the azimuthal angular difference between them, ${\Delta\phi}$> 2.5. The signal yield for an SSM WPRIME of mass 5.6 TeV is also included.

More…

Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 020, 2023.
Inspire Record 2152227 DOI 10.17182/hepdata.129875

A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.

46 data tables

Distribution of ST in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the leading jet’s DEEPAK8 light quark or gluon score in the training region for the $T\overline{T}$ MLP. The observed data are shown along with the predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario and the background. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x300 and x600, respectively, for visibility.

Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.

More…