The KS0KS0 system produced in the reaction π−p→nKS0KS0 at 6.0 and 7 0 GeV/c has been studied utilizing the ANL 1.5-m streamer-chamber facility. A 400 000-photograph exposure yielded 5096 unweighted nKS0KS0 events. The cross section for this reaction was determined to be 9.6 ± 1.3 μb at 6.0 GeV/c and 8.7 ± 1.1 μb at 7.0 GeV/c. The decay angular distributions were parametrized in terms of moments of the spherical harmonics. The 〈Y40〉 moment was fitted to interfering Breit-Wigner amplitudes for the f and f′ mesons. Using this fit, the branching ratio R=Γ(f→KK¯)Γ(f→all) was found to be (2.3 ± 0.8)%. An energy-independent production-amplitude analysis revealed an enhancement in the S-wave amplitude near 1300 MeV. The properties of the S-wave enhancement are discussed and compared with those observed in other recent experiments. Extrapolated cross sections for the reaction ππ→KS0KS0 are presented. We find a cross section considerably below the S-wave unitarity limit in the S* region.
FROM FIT TO D-WAVE (M=0) KS KS, CORRECTED FOR <K+ K-> AND <KL KL> DECAY MODES.
We present high-statistics results on the reactions a+p→c+X where a and c can be any of π±, K±, p, or p¯. The data were taken at 100 and 175 GeV/c incident momenta using the Fermilab Single-Arm Spectrometer operated over the kinematic range 0.2
No description provided.
No description provided.
No description provided.
None
SIG OBTAINED FROM INTEGRATION OF D(SIG)/D(T).
No description provided.
No description provided.
None
No description provided.
No description provided.
Proton-proton elastic scattering using 201- and 400-GeV/c extracted beams at Fermilab has been measured in the region 4.9<−t<14.4 GeV2. Contrary to predictions of diffraction models, there is no sign of a second dip or "break," and the slope A in the fit exp(At) is smaller than predicted. It drops from 1.5 to 0.8 GeV−2 over our t range. The shape of the t distribution can be fitted by the power law dσdt∝t−8.4 which is close to a quantum-chromodynamics (QCD) prediction of t−8. At fixed t the 201-GeV/c cross sections are about 2.3 times those at 400 GeV/c which is compatible with the QCD and constituent-interchange-model prediction that dσdt∝s−10 at fixed ts.
LOW T.
HIGH T.
LOW T.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
No description provided.
No description provided.
No description provided.
Data are presented on the inclusive production of π±, K±, p, and p¯ for π+, K+, and protons incident on nuclear targets at 100 GeV. The results cover the kinematic range 30≤P≤88 GeV/c for Pt=0.3 and 0.5 GeV/c. The observed A dependence of the invariant cross sections exhibits remarkable simplicity, which does not naturally follow from current models of particle production. The results show that the hypothesis of limiting fragmentation can be extended to include collisions with nuclei.
No description provided.