Date

Jet Fragmentation and {QCD} Models in $e^+ e^-$ Annihilation at $c$.m. Energies Between 12-{GeV} and 41.5-{GeV}

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 41 (1988) 359-373, 1988.
Inspire Record 263859 DOI 10.17182/hepdata.15531

The large amount of data accumulated by the TASSO detector at 35 GeV c.m. energy has been compared with the predictions of the latest generation of perturbative QCD+fragmentation models. By adjustment of the arbitrary parameters of these models, a very good description of the global properties of hadronic events was obtained. No one model gave the best description of all features of the data, each model being better than the others for some observables and worse in other quantities. We interpret these results in terms of the underlying QCD and hadronisation schemes. The trends of the data across the energy range 12.0≦W≦41.5 GeV are generally well reproduced by the models with the parameters optimised at 35 GeV.

0 data tables match query

Cross-Sections and Charged Multiplicity Distributions for pi+ p, K+ p and p p Interactions at 250-GeV/c

The NA22 collaboration Adamus, M. ; Agababyan, N.M. ; Ajinenko, I.V. ; et al.
Z.Phys.C 32 (1986) 475, 1986.
Inspire Record 18431 DOI 10.17182/hepdata.15845

Cross sections and charged multiplicity distributions for π+p,K+p andpp interactions at 250 GeV/c are presented and compared to each other as well as to earlier (for π+p andK+p lower energy) data. Consistently, the meson-proton (M+p) data have narrower multiplicity distributions and higher average multiplicity thanpp data. Up to our energy, generalized KNO functions describe the energy dependence of the shape of the multiplity distribution with one parameter forM+p and one forpp collisions. If interpreted in terms of negative binomials, the parameter 1/k tends to be slightly lower forM+p than forpp data. For both types of hadron-hadron collision, 1/k is larger than fore+e− andlp collisions.

0 data tables match query

Charged Particle and Neutral Kaon Production in e+ e- Annihilation at PETRA

The JADE collaboration Bartel, W. ; Becker, L. ; Bawbery, C. ; et al.
Z.Phys.C 20 (1983) 187, 1983.
Inspire Record 190818 DOI 10.17182/hepdata.16288

None

0 data tables match query

Analysis of the Energy Weighted Angular Correlations in Hadronic $e^+ e^-$ Annihilations at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 95, 1982.
Inspire Record 12010 DOI 10.17182/hepdata.16413

Measurements of energy weighted angular correlations in electron positron annihilations at c.m. energies of 22 GeV and 34 GeV are presented.

0 data tables match query

Observation of $e^+ e^- \to D(s$)+- $D^*(s$)-+ at $\sqrt{s}=4$.14-{GeV}

The MARK-III collaboration Blaylock, G. ; Bolton, T. ; Brown, J.S. ; et al.
Phys.Rev.Lett. 58 (1987) 2171, 1987.
Inspire Record 244856 DOI 10.17182/hepdata.20170

We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.

0 data tables match query

Charged Multiplicity Distributions and Correlations in e+ e- Annihilation at PETRA Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 45 (1989) 193, 1989.
Inspire Record 277658 DOI 10.17182/hepdata.1499

We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.

0 data tables match query

A Study of Energy-energy Correlations Between 12-{GeV} and 46.8-{GeV} {CM} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 36 (1987) 349-361, 1987.
Inspire Record 248660 DOI 10.17182/hepdata.1698

We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.

0 data tables match query

Investigation of the Total Charm Pair Cross-section in Nonresonant $e^+ e^-$ Annihilations at $\sqrt{s}=10$.5-{GeV}

The CLEO collaboration Bowcock, T.J.V. ; Kinoshita, K. ; Pipkin, F.M. ; et al.
Phys.Rev.D 38 (1988) 2679, 1988.
Inspire Record 23509 DOI 10.17182/hepdata.9269

We report results from two new methods for measuring the total production of charmed particles in nonresonant e+e− annihilations at √s =10.5 GeV. The rate for detection of events containing two reconstructed charmed mesons relative to that for events containing one is used to extract information about total charm production independent of decay branching fractions. The value of ΔRcc¯, the total charm-pair cross section normalized to the pointlike μ-pair cross section, is found to be 1.13−0.13+0.17±0.09, under an assumption of limited particle correlations. In an independent analysis the inclusive cross section for e+e−→qq¯→e±X is measured to be 0.293±0.017±0.017 nb. Using measured relative production rates and semileptonic branching fractions of D0 and D+ mesons and estimates of these quantities for Ds and Λc, this is found to correspond to ΔRcc¯=2.07±0.12±0.26. These two measurements are discussed in the context of measurements made by reconstruction of exclusive hadronic decay modes and of theoretical expectations.

0 data tables match query

Measurement of the decay of the Upsilon (1S) and Upsilon (2S) resonances to muon pairs

The Crystal Ball collaboration Kobel, M. ; Antreasyan, D. ; Bartels, H.W. ; et al.
Z.Phys.C 53 (1992) 193-206, 1992.
Inspire Record 306832 DOI 10.17182/hepdata.14771

Using the Crystal Ball detector at thee+e− storage ring DORIS II, we have measured the branching fraction to muon pairsBμμ of the Υ(

0 data tables match query

A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

0 data tables match query