Tests of Quantum Chromodynamics and a Direct Measurement of the Strong Coupling Constant $\alpha_S$ at $\sqrt{s}=30$-{GeV}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 89 (1979) 139-144, 1979.
Inspire Record 143680 DOI 10.17182/hepdata.6483

We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.

1 data table match query

No description provided.


Unique Solution for the Weak Neutral Current Coupling Constants in Purely Leptonic Interactions

The Mark-J collaboration Barber, D.P. ; Becker, U. ; Berghogff, G. ; et al.
Phys.Lett.B 95 (1980) 149-153, 1980.
Inspire Record 154136 DOI 10.17182/hepdata.6235

By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.

2 data tables match query

No description provided.

No description provided.


A Model Independent Second Order Determination of the Strong Coupling Constant $\alpha^- s$

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 2051, 1983.
Inspire Record 189724 DOI 10.17182/hepdata.3086

With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.

1 data table match query

No description provided.


Measurement of $e^+ e^- \to \mu^+ \mu^-$ Charge Asymmetry

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 48 (1982) 1701, 1982.
Inspire Record 177308 DOI 10.17182/hepdata.3116

The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.

2 data tables match query

No description provided.

No description provided.


Experimental Study of Electroweak Parameters at {PETRA} Energies (12-{GeV} $< E_{CMS} <$ 36.7-{GeV})

The MARK-J collaboration Barber, D.P. ; Becker, U. ; Bei, G.D. ; et al.
Phys.Rev.Lett. 46 (1981) 1663, 1981.
Inspire Record 164675 DOI 10.17182/hepdata.3303

We have performed a high-statistics measurement of Bhabha scattering and of the production of hadrons in electron-positron annihilation at PETRA energies (12 GeV<~s<~36.7 GeV). Combining the results with measurements of μ+μ− and τ+τ− production enables us to compare our results with electroweak theory. We find sin2θw=0.27±0.08. This is in good agreement with the value obtained from neutrino experiments which were carried out in entirely different kinematic regions.

3 data tables match query

ASYMMETRY WAS USED.

OVERALL FIT USED.

No description provided.


Inelastic Diffractive Scattering at the CERN ISR

The CHLM collaboration Albrow, M.G. ; Bagchus, A. ; Barber, D.P. ; et al.
Nucl.Phys.B 108 (1976) 1-29, 1976.
Inspire Record 3424 DOI 10.17182/hepdata.8494

The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .

191 data tables match query

No description provided.

No description provided.

No description provided.

More…

Correlations Associated with Particles Produced at Small Angles in p p Collisions at the CERN ISR

The CHLM collaboration Albrow, M.G. ; Barber, D.P. ; Benz, P. ; et al.
Nucl.Phys.B 102 (1976) 275-296, 1976.
Inspire Record 2886 DOI 10.17182/hepdata.36078

Data on correlations between momentum analysed protons, pions or K mesons, and charged particles produced in pp collisions at the CERN ISR are presented. The charged particles were detected in a ∼4 π scintillation counter hodoscope. The pseudo-rapidity distributions are well described by production within the limits of cylindrical phase space, with negative kaons and antiprotons yielding narrower distributions than protons, pions and positive kaons. The azimuthal distributions show symmetry around the t -channel axis in the rest frame of the recoiling mass M x in pp → aX (a = detected proton, pion, positive kaon).

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

A Summary of Recent Experimental Results From Mark-$J$: High-energy $e^+ e^-$ Collisions at {PETRA}

The Mark-J collaboration Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rept. 109 (1984) 131, 1984.
Inspire Record 196567 DOI 10.17182/hepdata.30997

None

4 data tables match query

DATA ARE CORRECTED FOR TWO-PHOTON AND TAU PRODUCTION EFFECTS, ACCEPTANCE AND QED RADIATIVE EFFECTS UP TO ORDER ALPHA**3. THERE IS ALSO A 6 PCT NORMALISATION ERROR NOT INCLUDED. THE OVERALL AVERAGE VALUE OF R FROM THIS DATA IS 3.88 +- 0.04 +- 0.22.

No description provided.

ERRORS CONTAIN BOTH STATISTICS AND SYSTEMATICS.

More…

Hard Scattering and $\Delta - \Delta$ Exchange in Backward Photoproduction of $\Delta^{++} \pi^-$

Barber, D.P. ; Dainton, J.B. ; Lee, L.C.Y. ; et al.
Phys.Lett.B 98 (1981) 135-139, 1981.
Inspire Record 156090 DOI 10.17182/hepdata.27134

A tagged photon beam and multiparticle spectrometer have been used to measure the backward photoproduction process γp → Δ ++ π − . The energy dependence of the production cross section between 2.8 and 4.8 GeV is studied and found to exhibit shrinkage in excess of that expected for Δ σ dominance. An interpretation of the production mechanism in terms of an incoherent mixture of Δ σ exchange and a “hard scattering” contribution is presented.

1 data table match query

No description provided.


Search for Top Quark and a Test of Models Without Top Quark at the Highest {PETRA} Energies

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 799, 1983.
Inspire Record 182337 DOI 10.17182/hepdata.20549

With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.

1 data table match query

MEAN VALUES OF R. FIRST ENERGY RANGE IS ACTUALLY 29.90 TO 31.46 AND 33.0 TO 36.72 GEV.