Measurements of the reactions e++e−→e++e−, μ++μ−, and τ++τ− at PETRA energies (s12=13,17,27.4,30 and 31.6 GeV) are reported. The results show that these reactions agree well with the predictions of quantum electrodynamics thus determining that all the known charged leptons are pointlike particles to a distance < × 10−16 cm.
No description provided.
No description provided.
This paper presents production and decay characteristics of 500 high-mass, high-resolution μ+μ− pairs produced in π− Be collisions at 150 and 175 GeV/c. The data do not agree with a simple Drell-Yan production mechanism, but indicate that higher-order quantum-chromodynamic corrections must be included.
No description provided.
No description provided.
We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.
CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
The elastic photoproduction of four pions has been studied at incident photon energies between 2.8 and 4.8 GeV. Production cross-sections are presented and an analysis of the angular decay correlations is also described, indicating a large 1− contribution in both final states, π+ π− π+ π− and π+ π− π0 π0. A quantitative understanding of these and other available 4π photoproduction data in terms of the ρ′(∼1.2GeV) and the ρ′(∼1.6) is presented.
WITH OMEGA/RHO DECAY PARAMETRIZATION.
WITH OMEGA/A1 DECAY PARAMETRIZATION.
This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.
THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.
THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.
Cross sections and charged multiplicity distributions forK+p interactions at 70 GeV/c are presented and compared withK+p data at other energies. Comparisons are also made with available π+p,pp, andK−p data.
No description provided.
No description provided.
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
No description provided.
No description provided.
No description provided.
Measurements of the photoproduction processes γρ→ρ+n and γρ→ρ-Δ++ (1236) are reported in the energy range 2.8 to 4.8 GeV. The data show shrinkage of the differential cross section in this energy region for the process γρ→ρ-Δ++ (1236); no shrinkage is observed for the ρ+n process. The energy dependences of the ρ+n and ρ-Δ++ (1236) total cross sections are much steeper than current model prediction. The ρ spin density matrices for each process are also presented.
No description provided.
SLOPE AND INTERCEPT OF D(SIG)/DT.
No description provided.
We report on the measurement of the reaction e+e−→e+e− with a large—solid-angle electromagnetic shower detector at center-of-mass energies s=13 and 17 GeV. Comparison of our results with predictions of quantum electrodynamics shows excellent agreement in both the angular distribution and energy dependence. Values of cutoff parameters are also given.
No description provided.
We report the first measurement of the ratio R=(σe+e−→hadrons)(σe+e−→μ+μ−) (with negligible τ-lepton contribution) at a center-of-mass energy s=13 GeV and s=17 GeV, from the just finished electron-positron colliding-beam facility PETRA. The detector, MARK-J, has an approximately 4π solid angle and measures γ, e, μ, and charged and neutral hadrons simultaneously. Our results yield R(s=17 GeV)=4.9±0.6 (statistical) ±0.7 (systematic error), and R(s=13 GeV)=4.6±0.5 (statistical) ±0.7 (systematic error). The ratio R(s=17 GeV)R(s=13 GeV) is 1.08±0.18.
No description provided.
No description provided.