Date

Search for boosted low-mass resonances decaying into hadrons produced in association with a photon in pp collisions at $\sqrt{s}=$13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 01 (2025) 099, 2025.
Inspire Record 2813982 DOI 10.17182/hepdata.153849

Many extensions of the Standard Model, including those with dark matter particles, propose new mediator particles that decay into hadrons. This paper presents a search for such low mass narrow resonances decaying into hadrons using 140 fb$^{-1}$ of proton-proton collision data recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV. The resonances are searched for in the invariant mass spectrum of large-radius jets with two-pronged substructure that are recoiling against an energetic photon from initial state radiation, which is used as a trigger to circumvent limitations on the maximum data recording rate. This technique enables the search for boosted hadronically decaying resonances in the mass range 20-100 GeV hitherto unprobed by the ATLAS Collaboration. The observed data are found to agree with Standard Model predictions and 95% confidence level upper limits are set on the coupling of a hypothetical new spin-1 $Z'$ resonance with Standard Model quarks as a function of the assumed $Z'$-boson mass in the range between 20 and 200 GeV.

6 data tables

Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

Invariant mass $m_{J}$ of the resonance candidates in the region defined with forward photon $\eta_{\gamma} > 1.3$ and a tagged large-$R$ jet after the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

Invariant mass $m_{J}$ of the resonance candidates in the region defined with central photon $\eta_{\gamma} < 1.3$ and an anti-tagged large-$R$ jetafter the fit to data under the background-only hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative $Z^{`}$ signal distributions are overlaid as red lines. The signal is shown for $g_q=0.2$ with production cross sections of 309 fb, 143 fb, and 34.2 fb for $m_{Z^{`}}=(20,~50,~\text{and}~125~\text{GeV}$), respectively.

More…

Differential cross-section measurements of Higgs boson production in the $H\to\tau^+\tau^-$ decay channel in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 03 (2025) 010, 2025.
Inspire Record 2810563 DOI 10.17182/hepdata.157351

Differential measurements of Higgs boson production in the $\tau$-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF), $VH$ and $t\bar{t}H$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb$^{-1}$ of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: the Simplified Template Cross-Section (STXS) approach and an Unfolded Fiducial Differential measurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson's transverse momentum ($p^{\text{H}}_\text{T}$), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets ($m_{jj}$). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction for $m_{jj}>1.5$ TeV and $p^{\text{H}}_\text{T}>200$ GeV ($p^{\text{H}}_\text{T}<200$ GeV) is ${1.29}^{+0.39}_{-0.34}$ (${0.12}^{+0.34}_{-0.33}$). This is the first VBF measurement for the higher-$p^{\text{H}}_\text{T}$ criteria, and the most precise for the lower-$p^{\text{H}}_\text{T}$ criteria. The fiducial cross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed $\Delta\phi_{jj}$ between the two leading jets. The measurements have a precision of 30%-50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient $c_{H\tilde{W}}$.

32 data tables

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}>200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_1 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.

More…

Version 2
Measurement of $t\bar{t}$ production in association with additional $b$-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s}$=13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 01 (2025) 068, 2025.
Inspire Record 2809112 DOI 10.17182/hepdata.153521

This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.

211 data tables

- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> ATLAS public webpage of paper: <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2019-03/">link</a><br/><br/> <b>Fiducial phase space definitions:</b><br/> <i>Particle level:</i> <ul> <li> Common: N E = N MU = 1, CHARGE E != CHARGE MU <li> NJETS &gt;= 2, NBJETS &gt;= 2 <li> NJETS &gt;= 3, NBJETS &gt;= 3 <li> NJETS &gt;= 4, NBJETS &gt;= 3 <li> NJETS &gt;= 4, NBJETS &gt;= 4 <li> NJETS &gt;= 5, NBJETS &gt;= 4 </ul><br/> <b>Objects definitions:</b> <ul> <li> LEP PT &gt; 28 GeV, ABS ETARAP LEP &lt; 2.5 <li> JET PT &gt; 25 GeV, ABS ETARAP JET &lt; 2.5, R JET = 0.4 <li> BJET: &gt;=1 b-hadron with PT &gt; 5 GeV is associated to the jet via ghost matching </ul><br/> <b>Particle level:</b><br/> <br/>Data from Table 06: <a href="153521?table="Fiducial xsec results>Fiducial xsec results </a><br/><br/> <u>1D:</u><br/> Data bootstraps: <ul> <li> Data from Figure 09: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥2b$">Bootstrap $N_{b-jets}$ in $≥2b$ </a> <li> Data from Figure 10a: <a href="153521?table=Bootstrap $N_{b-jets}$ in $≥3b$">Bootstrap $N_{b-jets}$ in $≥3b$ </a> <li> Data from Figure 10b: <a href="153521?table=Bootstrap $N_{c/l-jets}$ in $≥3b$">Bootstrap $N_{c/l-jets}$ in $≥3b$ </a> <li> Data from Figure 10c: <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥3b$">Bootstrap $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Figure 10d: <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Figure 11a: <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥3b$">Bootstrap $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Figure 11b: <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Figure 11c: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Figure 11d: <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Figure 12a: <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥3b$">Bootstrap $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Figure 12b: <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 13a: <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥3b$">Bootstrap $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13b: <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 13c: <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥3b$">Bootstrap $m(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 13d: <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥3b$">Bootstrap $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Figure 14a: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Figure 14b: <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14c: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 14d: <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Figure 15a: <a href="153521?table=Bootstrap $m(bb^{min\Delta R})$ in $≥4b$">Bootstrap $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15b: <a href="153521?table=Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$">Bootstrap $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Figure 15c: <a href="153521?table=Bootstrap $m(bb^{add})$ in $≥4b$">Bootstrap $m(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 15d: <a href="153521?table=Bootstrap $p_{T}(bb^{add})$ in $≥4b$">Bootstrap $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Figure 01a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥3b$">Bootstrap $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Figure 01b (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Figure 02a (aux): <a href="153521?table=Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$">Bootstrap $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 02b (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥3b$">Bootstrap $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Figure 03a (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Figure 03b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Figure 04a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥3b$">Bootstrap $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Figure 04b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Figure 05a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥3b$">Bootstrap $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Figure 05b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥3b$">Bootstrap $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Figure 05c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Figure 05d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Figure 06a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1})$ in $≥4b$">Bootstrap $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Figure 06b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Figure 06c (axu): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Figure 06d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Figure 07a (aux): <a href="153521?table=Bootstrap $p_{T}(b_{3})$ in $≥4b$">Bootstrap $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Figure 07b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{4})$ in $≥4b$">Bootstrap $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Figure 07c (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 07d (aux): <a href="153521?table=Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$">Bootstrap $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Figure 08a (aux): <a href="153521?table=Bootstrap $m(b_{1}b_{2})$ in $≥4b$">Bootstrap $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 08b (aux): <a href="153521?table=Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$">Bootstrap $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 09a (aux): <a href="153521?table=Bootstrap $m(bb^{top})$ in $≥4b$">Bootstrap $m(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 09b (aux): <a href="153521?table=Bootstrap $p_{T}(bb^{top})$ in $≥4b$">Bootstrap $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Figure 10a (aux): <a href="153521?table=Bootstrap $H_{T}^{all}$ in $≥4b$">Bootstrap $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Figure 10b (aux): <a href="153521?table=Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$">Bootstrap $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Figure 11a (aux): <a href="153521?table=Bootstrap $m(e\mu bb^{top})$ in $≥4b$">Bootstrap $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Figure 11b (aux): <a href="153521?table=Bootstrap $H_{T}^{had}$ in $≥4b$">Bootstrap $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Figure 11c (aux): <a href="153521?table=Bootstrap min$\Delta R(bb)$ in $≥4b$">Bootstrap min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Figure 11d (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Bootstrap $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Figure 12a (aux): <a href="153521?table=Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$">Bootstrap $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Figure 12b (aux): <a href="153521?table=Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$">Bootstrap $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Figure 12c (aux): <a href="153521?table=Bootstrap $N_{l/c-jets}$ in $≥4b$">Bootstrap $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Figure 13a (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13b (aux): <a href="153521?table=Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Bootstrap $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13c (aux): <a href="153521?table=Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Bootstrap $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 13d (aux): <a href="153521?table=Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Bootstrap $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Figure 14a (aux): <a href="153521?table=Bootstrap $|\eta(b_{1})|$ in $≥4b$">Bootstrap $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Figure 14b (aux): <a href="153521?table=Bootstrap $|\eta(b_{2})|$ in $≥4b$">Bootstrap $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Figure 14c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Figure 14d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Figure 15a (aux): <a href="153521?table=Bootstrap $|\eta(b_{3})|$ in $≥4b$">Bootstrap $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Figure 15b (aux): <a href="153521?table=Bootstrap $|\eta(b_{4})|$ in $≥4b$">Bootstrap $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Figure 15c (aux): <a href="153521?table=Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Figure 15d (aux): <a href="153521?table=Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$">Bootstrap $|\eta(b_{2}^{add})|$ in $≥4b$ </a> </ul><br/> Measurements: <ul> <li> Data from Table 01 (aux): <a href="153521?table=Diff. XS $N_{b-jets}$ in $≥2b$">Diff. XS $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 02 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥3b$">Diff. XS $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 03 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥3b$">Diff. XS $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 04 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 05 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 06 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥3b$">Diff. XS $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 07 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 08 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 09 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 10 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥3b$">Diff. XS $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 11 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 12 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥3b$">Diff. XS $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 13 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 14 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥3b$">Diff. XS $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 15 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 16 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥3b$">Diff. XS $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 17 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 18 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥3b$">Diff. XS $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 19 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 20 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥3b$">Diff. XS $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 21 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥3b$">Diff. XS $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 22 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 23 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥3b$">Diff. XS $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 24 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 25 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥3b$">Diff. XS $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 26 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 27 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 28 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 29 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 30 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 31 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 32 (aux): <a href="153521?table=Diff. XS $H_{T}^{had}$ in $≥4b$">Diff. XS $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 33 (aux): <a href="153521?table=Diff. XS $H_{T}^{all}$ in $≥4b$">Diff. XS $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 34 (aux): <a href="153521?table=Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$">Diff. XS $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 35 (aux): <a href="153521?table=Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$">Diff. XS $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 36 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1})$ in $≥4b$">Diff. XS $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 37 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 38 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 39 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 40 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{3})$ in $≥4b$">Diff. XS $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 41 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 42 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{4})$ in $≥4b$">Diff. XS $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 43 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$">Diff. XS $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 44 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1})|$ in $≥4b$">Diff. XS $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 45 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 46 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2})|$ in $≥4b$">Diff. XS $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 47 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 48 (aux): <a href="153521?table=Diff. XS $|\eta(b_{3})|$ in $≥4b$">Diff. XS $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 49 (aux): <a href="153521?table=Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 50 (aux): <a href="153521?table=Diff. XS $|\eta(b_{4})|$ in $≥4b$">Diff. XS $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 51 (aux): <a href="153521?table=Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$">Diff. XS $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 52 (aux): <a href="153521?table=Diff. XS $m(b_{1}b_{2})$ in $≥4b$">Diff. XS $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 53 (aux): <a href="153521?table=Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$">Diff. XS $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 54 (aux): <a href="153521?table=Diff. XS $m(bb^{top})$ in $≥4b$">Diff. XS $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 55 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{top})$ in $≥4b$">Diff. XS $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 56 (aux): <a href="153521?table=Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$">Diff. XS $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 57 (aux): <a href="153521?table=Diff. XS $m(e\mu bb^{top})$ in $≥4b$">Diff. XS $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 58 (aux): <a href="153521?table=Diff. XS $m(bb^{min\Delta R})$ in $≥4b$">Diff. XS $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 59 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$">Diff. XS $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 60 (aux): <a href="153521?table=Diff. XS $m(bb^{add})$ in $≥4b$">Diff. XS $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 61 (aux): <a href="153521?table=Diff. XS $p_{T}(bb^{add})$ in $≥4b$">Diff. XS $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 62 (aux): <a href="153521?table=Diff. XS $min\Delta R(bb)$ in $≥4b$">Diff. XS $min\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 63 (aux): <a href="153521?table=Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$">Diff. XS $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 64 (aux): <a href="153521?table=Diff. XS $N_{l/c-jets}$ in $≥4b$">Diff. XS $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 65 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Diff. XS $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 66 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Diff. XS $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 67 (aux): <a href="153521?table=Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 68 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1}) - p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 69 (aux): <a href="153521?table=Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Diff. XS $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 70 (aux): <a href="153521?table=Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Diff. XS $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/> <u>2D:</u><br/> Correlation matrices: <ul> <li> Data from Table 71 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥2b$">Corr. mtrx $N_{b-jets}$ in $≥2b$ </a> <li> Data from Table 72 (aux): <a href="153521?table=Corr. mtrx $N_{b-jets}$ in $≥3b$">Corr. mtrx $N_{b-jets}$ in $≥3b$ </a> <li> Data from Table 73 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥3b$">Corr. mtrx $H_{T}^{had}$ in $≥3b$ </a> <li> Data from Table 74 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥3b$">Corr. mtrx $H_{T}^{all}$ in $≥3b$ </a> <li> Data from Table 75 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥3b$ </a> <li> Data from Table 76 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥3b$ </a> <li> Data from Table 77 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1})$ in $≥3b$ </a> <li> Data from Table 78 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥3b$ </a> <li> Data from Table 79 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2})$ in $≥3b$ </a> <li> Data from Table 80 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥3b$ </a> <li> Data from Table 81 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥3b$">Corr. mtrx $p_{T}(b_{3})$ in $≥3b$ </a> <li> Data from Table 82 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 83 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1})|$ in $≥3b$ </a> <li> Data from Table 84 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥3b$ </a> <li> Data from Table 85 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2})|$ in $≥3b$ </a> <li> Data from Table 86 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥3b$ </a> <li> Data from Table 87 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥3b$">Corr. mtrx $|\eta(b_{3})|$ in $≥3b$ </a> <li> Data from Table 88 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥3b$ </a> <li> Data from Table 89 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 90 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 91 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥3b$">Corr. mtrx $m(bb^{top})$ in $≥3b$ </a> <li> Data from Table 92 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥3b$ </a> <li> Data from Table 93 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 94 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥3b$ </a> <li> Data from Table 95 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥3b$ </a> <li> Data from Table 96 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥3b$">Corr. mtrx $N_{l/c-jets}$ in $≥3b$ </a> <li> Data from Table 97 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥3b$ </a> <li> Data from Table 98 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥3b$ </a> <li> Data from Table 99 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top},l/c-jet)$ in $≥3b≥1l/c$ </a> <li> Data from Table 100 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥3b≥1l/c$ </a> <li> Data from Table 101 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥3b≥1l/c$ </a> <li> Data from Table 102 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥3b≥1l/c$ </a> <li> Data from Table 103 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{had}$ in $≥4b$">Corr. mtrx $H_{T}^{had}$ in $≥4b$ </a> <li> Data from Table 104 (aux): <a href="153521?table=Corr. mtrx $H_{T}^{all}$ in $≥4b$">Corr. mtrx $H_{T}^{all}$ in $≥4b$ </a> <li> Data from Table 105 (aux): <a href="153521?table=Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$">Corr. mtrx $\Delta R_{avg}^{bb}$ in $≥4b$ </a> <li> Data from Table 106 (aux): <a href="153521?table=Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$">Corr. mtrx $\Delta\eta_{max}^{jj}$ in $≥4b$ </a> <li> Data from Table 107 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1})$ in $≥4b$ </a> <li> Data from Table 108 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{top})$ in $≥4b$ </a> <li> Data from Table 109 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2})$ in $≥4b$ </a> <li> Data from Table 110 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{top})$ in $≥4b$ </a> <li> Data from Table 111 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{3})$ in $≥4b$">Corr. mtrx $p_{T}(b_{3})$ in $≥4b$ </a> <li> Data from Table 112 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 113 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{4})$ in $≥4b$">Corr. mtrx $p_{T}(b_{4})$ in $≥4b$ </a> <li> Data from Table 114 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$">Corr. mtrx $p_{T}(b_{2}^{add})$ in $≥4b$ </a> <li> Data from Table 115 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1})|$ in $≥4b$ </a> <li> Data from Table 116 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{top})|$ in $≥4b$ </a> <li> Data from Table 117 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2})|$ in $≥4b$ </a> <li> Data from Table 118 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{top})|$ in $≥4b$ </a> <li> Data from Table 119 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{3})|$ in $≥4b$">Corr. mtrx $|\eta(b_{3})|$ in $≥4b$ </a> <li> Data from Table 120 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{1}^{add})|$ in $≥4b$ </a> <li> Data from Table 121 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{4})|$ in $≥4b$">Corr. mtrx $|\eta(b_{4})|$ in $≥4b$ </a> <li> Data from Table 122 (aux): <a href="153521?table=Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$">Corr. mtrx $|\eta(b_{2}^{add})|$ in $≥4b$ </a> <li> Data from Table 123 (aux): <a href="153521?table=Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 124 (aux): <a href="153521?table=Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $p_{T}(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 125 (aux): <a href="153521?table=Corr. mtrx $m(bb^{top})$ in $≥4b$">Corr. mtrx $m(bb^{top})$ in $≥4b$ </a> <li> Data from Table 126 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{top})$ in $≥4b$ </a> <li> Data from Table 127 (aux): <a href="153521?table=Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$">Corr. mtrx $m(e\mu b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 128 (aux): <a href="153521?table=Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$">Corr. mtrx $m(e\mu bb^{top})$ in $≥4b$ </a> <li> Data from Table 129 (aux): <a href="153521?table=Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $m(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 130 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{min\Delta R})$ in $≥4b$ </a> <li> Data from Table 131 (aux): <a href="153521?table=Corr. mtrx $m(bb^{add})$ in $≥4b$">Corr. mtrx $m(bb^{add})$ in $≥4b$ </a> <li> Data from Table 132 (aux): <a href="153521?table=Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$">Corr. mtrx $p_{T}(bb^{add})$ in $≥4b$ </a> <li> Data from Table 133 (aux): <a href="153521?table=Corr. mtrx min$\Delta R(bb)$ in $≥4b$">Corr. mtrx min$\Delta R(bb)$ in $≥4b$ </a> <li> Data from Table 134 (aux): <a href="153521?table=Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$">Corr. mtrx $\Delta R(b_{1}b_{2})$ in $≥4b$ </a> <li> Data from Table 135 (aux): <a href="153521?table=Corr. mtrx $N_{l/c-jets}$ in $≥4b$">Corr. mtrx $N_{l/c-jets}$ in $≥4b$ </a> <li> Data from Table 136 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu b_{1}b_{2},b_{3})$ in $≥4b$ </a> <li> Data from Table 137 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$">Corr. mtrx $\Delta R(e\mu bb^{top}, b_{1}^{add})$ in $≥4b$ </a> <li> Data from Table 138 (aux): <a href="153521?table=Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $\Delta R(e\mu bb^{top}, l/c-jet_{1})$ in $≥4b≥1l/c$ </a> <li> Data from Table 139 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})-p_{T}(b_{1}^{add})$ in $≥4b≥1l/c$ </a> <li> Data from Table 140 (aux): <a href="153521?table=Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$">Corr. mtrx $|\eta(l/c-jet_{1})|$ in $≥4b≥1l/c$ </a> <li> Data from Table 141 (aux): <a href="153521?table=Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$">Corr. mtrx $p_{T}(l/c-jet_{1})$ in $≥4b≥1l/c$ </a> </ul><br/>

Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.

Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.

More…

Measurement of the Lund jet plane in hadronic decays of top quarks and W bosons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 416, 2025.
Inspire Record 2807806 DOI 10.17182/hepdata.157586

The Lund jet plane (LJP) is measured for the first time in $t\overline{t}$ events, using 140 fb$^{-1}$ of $\sqrt{s}$ = 13 TeV pp collision data collected with the ATLAS detector at the LHC. The LJP is a two-dimensional observable of the sub-structure of hadronic jets that acts as a proxy for the kinematics of parton showers and hadron formation. The observable is constructed from charged particles and is measured for R = 1.0 anti-$k_t$ jets with transverse momentum above 350 GeV containing the full decay products of either a top quark or a daughter $W$ boson. The other top quark in the event is identified from its decay into a b-quark, an electron or a muon and a neutrino. The measurement is corrected for detector effects and compared with a range of Monte Carlo predictions sensitive to different aspects of the hadronic decays of the heavy particles. In the $W$-boson-initiated jets, all the predictions are incompatible with the measurement. In the top quark initiated jets, disagreement with all predictions is observed in smaller subregions of the plane, and with a subset of the predictions across the fiducial plane. The measurement could be used to improve the tuning of Monte Carlo generators, for better modelling of hadronic decays of heavy quarks and bosons, or to improve the performance of jet taggers.

10 data tables

Unfolded Lund Jet Plane in the top jet selection.

Unfolded Lund Jet Plane in the top jet selection, $2.11<\ln(1/z)<2.46$.

Unfolded Lund Jet Plane in the top jet selection, $1.60<\ln(R/\Delta R)<2.00$.

More…

Strangeness Production in $\sqrt{s_{\rm NN}}=3$ GeV Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
JHEP 10 (2024) 139, 2024.
Inspire Record 2807679 DOI 10.17182/hepdata.153884

We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.

19 data tables

dN/dy of lambda for different centrality bins.

dN/dy of Ks0 for different centrality bins.

Rapidity dependence of Lambda/p for different centrality bins.

More…

Search for neutral long-lived particles that decay into displaced jets in the ATLAS calorimeter in association with leptons or jets using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 11 (2024) 036, 2024.
Inspire Record 2807458 DOI 10.17182/hepdata.153520

A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic calorimeter using 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a $W$ or $Z$ boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a $Z$ boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.

44 data tables

Observed (solid line) and expected (dashed line) upper limits at the 95&percnt; CL on the cross-section times branching fraction as a function of c&tau; for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.

Observed (solid line) and expected (dashed line) upper limits at the 95&percnt; CL on the cross-section times branching fraction as a function of c&tau; for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.

Observed (solid line) and expected (dashed line) upper limits at the 95&percnt; CL on the cross-section times branching fraction as a function of c&tau; for a selection of HS signal models in the CalR+2J channel for HS models with mediator masses of (a) 125 GeV, (b) 600 GeV and (c) 1000 GeV.

More…

Search for light neutral particles decaying promptly into collimated pairs of electrons or muons in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 335, 2025.
Inspire Record 2807459 DOI 10.17182/hepdata.153519

A search for a dark photon, a new light neutral particle, which decays promptly into collimated pairs of electrons or muons is presented. The search targets dark photons resulting from the exotic decay of the Standard Model Higgs boson, assuming its production via the dominant gluon-gluon fusion mode. The analysis is based on 140 fb$^{-1}$ of data collected with the ATLAS detector at the Large Hadron Collider from proton-proton collisions at a center-of-mass energy of 13 TeV. Events with collimated pairs of electrons or muons are analysed and background contributions are estimated using data-driven techniques. No significant excess in the data above the Standard Model background is observed. Upper limits are set at 95% confidence level on the branching ratio of the Higgs boson decay into dark photons between 0.001% and 5%, depending on the assumed dark photon mass and signal model.

25 data tables

Simulated distributions of the number of &mu;LJ candidates for a selection of &gamma;<sub>d</sub> mass values. The shape and normalisation of the distributions are extracted from the parameterisation obtained for &mu;LJ-&mu;LJ SR, using the FRVZ model and assuming a branching ratio of the Higgs boson decay to dark photons of 5&percnt;.

The background-only fit (with its components) of the &mu;LJ mass distributions for the &mu;LJ&ndash;&mu;LJ region, where both the &mu;LJs are included. A signal distribution for a dark photon mass of 1&nbsp;GeV is overlaid, assuming the HAHM model and a branching ratio of the Higgs boson to dark photons of 0.5&percnt;. The points reported in the table correspond to the &mu;LJ mass distribution in data. The background pdf is defined in Eq. 1 in the paper. The corresponding fitted parameters in the Signal Region are N<sub>exp1</sub>=54, N<sub>exp2</sub>=137, &tau;<sub>1</sub>=3.2 GeV, &tau;<sub>2</sub>=1.3 GeV, N<sub>J/&psi;</sub>=34. The parameter &sigma;<sub>J/&psi;</sub> is fixed from the Control Region fit to 0.033 GeV.

The background-only fit (with its components) of the &mu;LJ mass distributions for the eLJ&ndash;&mu;LJ region. A signal distribution for a dark photon mass of 1&nbsp;GeV is overlaid, assuming the HAHM model and a branching ratio of the Higgs boson to dark photons of 0.5&percnt;. The points reported in the table correspond to the &mu;LJ mass distribution in data. The background pdf is defined in Eq. 1 in the paper. The corresponding fitted parameters in the Signal Region are N<sub>exp1</sub>=168, N<sub>exp2</sub>=26, &tau;<sub>1</sub>=0.50 GeV, &tau;<sub>2</sub>=0.34 GeV, N<sub>J/&psi;</sub>=26. The parameter &sigma;<sub>J/&psi;</sub> is fixed from the Control Region fit to 0.033 GeV.

More…

Centrality dependence of Lévy-stable two-pion Bose-Einstein correlations in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 110 (2024) 064909, 2024.
Inspire Record 2806798 DOI 10.17182/hepdata.158642

The PHENIX experiment measured the centrality dependence of two-pion Bose-Einstein correlation functions in $\sqrt{s_{_{NN}}}=200$~GeV Au$+$Au collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The data are well represented by Lévy-stable source distributions. The extracted source parameters are the correlation-strength parameter $\lambda$, the Lévy index of stability $\alpha$, and the Lévy-scale parameter $R$ as a function of transverse mass $m_T$ and centrality. The $\lambda(m_T)$ parameter is constant at larger values of $m_T$, but decreases as $m_T$ decreases. The Lévy scale parameter $R(m_T)$ decreases with $m_T$ and exhibits proportionality to the length scale of the nuclear overlap region. The Lévy exponent $\alpha(m_T)$ is independent of $m_T$ within uncertainties in each investigated centrality bin, but shows a clear centrality dependence. At all centralities, the Lévy exponent $\alpha$ is significantly different from that of Gaussian ($\alpha=2$) or Cauchy ($\alpha=1$) source distributions. Comparisons to the predictions of Monte-Carlo simulations of resonance-decay chains show that in all but the most peripheral centrality class (50%-60%), the obtained results are inconsistent with the measurements, unless a significant reduction of the in-medium mass of the $\eta'$ meson is included. In each centrality class, the best value of the in-medium $\eta'$ mass is compared to the mass of the $\eta$ meson, as well as to several theoretical predictions that consider restoration of $U_A(1)$ symmetry in hot hadronic matter.

68 data tables

The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 0-10% centrality bin obtained from Lévy fits with Eq. (9).

The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 10-20% centrality bin obtained from Lévy fits with Eq. (9).

The transverse-mass dependence of the correlation-strength parameter $\lambda$ in 20-30% centrality bin obtained from Lévy fits with Eq. (9).

More…

Measurement of directed flow in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV with the STAR Event Plane Detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 111 (2025) 014906, 2025.
Inspire Record 2808515 DOI 10.17182/hepdata.153808

In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients ($v_n$). The first-order flow coefficient, also referred to as the directed flow ($v_{1}$), describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity ($\eta$), where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD ($2.1 <|\eta|< 5.1$) and high-statistics BES-II data enables us to extend the $v_{1}$ measurement to the forward and backward $\eta$ regions. In this paper, we present the measurement of $v_{1}$ over a wide $\eta$ range in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV using the STAR EPD. The results of the analysis at $\sqrt{s_{NN}}=$19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable $v_{1}$ at large $\eta$ as was observed experimentally. The model comparison also indicates $v_{1}$ at large $\eta$ might be sensitive to the QGP phase transition.

32 data tables

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

More…

Jet modification via $\pi^0$-hadron correlations in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Adare, A. ; et al.
Phys.Rev.C 110 (2024) 044901, 2024.
Inspire Record 2797343 DOI 10.17182/hepdata.159378

High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.

29 data tables

Per-trigger jet-pair yield as a function of $\Delta\phi$ for selected $\pi^0$ trigger and charged-hadron-associated $p_T$ combinations (${{p_{T,\pi^0}} \otimes p_{T,h}}$) in Au$+$Au collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.

Integrated away-side $I_{AA}$ as a function of $p_T^h$. Systematic uncertainties for background subtraction and global scale uncertainties are given.

Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.

More…