Event-by-event fluctuations of the average transverse momentum of produced particles near mid-rapidity have been measured by the PHENIX Collaboration in sqrt(s_NN)=200 GeV Au+Au and p+p collisions at the Relativistic Heavy Ion Collider. The fluctuations are observed to be in excess of the expectation for statistically independent particle emission for all centralities. The excess fluctuations exhibit a dependence on both the centrality of the collision and on the transverse momentum window over which the average is calculated. Both the centrality and p_T dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard scattering processes.
Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 0-5% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.
Comparisons between the data and mixed event $M_{p_T}$ distributions for the representative 30-35% centrality classes. Also given are the residuals between the data and mixed events in units of standard deviations of the data points form the mixed event points.
$F_{p_T}$ (in percent, 0.2 GeV/$c$ < $p_T$ < 2.0 GeV/$c$) as a function of centrality, which is expressed in terms of the number of participants in the collision, $N_{part}$.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
The reactions e^+e^- -> e^+e^- Lambda X and e^+e^- -> e^+e^- Lambda X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 209 GeV. Inclusive differential cross sections are measured as a function of the lambda transverse momentum, p_t, and pseudo-rapidity, eta, in the ranges 0.4 GeV < p_t < 2.5 GeV and |\eta| < 1.2. The data are compared to Monte Carlo predictions. The differential cross section as a function of p_t is well described by an exponential of the form A exp (- p_t /
The differential cross section for LAMBDA production as a function of PT.
The differential cross section for LAMBDA production as a function of pseudorapidity in two PT regions.
We present the results of a systematic study of the shape of the pion distribution in coordinate space at freeze-out in Au+Au collisions at RHIC using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the extracted HBT radii vs. emission angle indicate sources elongated perpendicular to the reaction plane. The results indicate that the pressure and expansion time of the collision system are not sufficient to completely quench its initial shape.
Squared HBT radii relative to the reaction plane angle for three centrality classes.
Squared HBT radii relative to the reaction plane angle for four kT (GeV/c) bins, 20-30% centrality events.
Fourier coefficients of azimuthal oscillations of HBT radii vs number of participating nucleons, for three kT (GeV/c) bins. Larger participant numbers correspond to more central collisions.
Triple differential dijet cross sections in e^\pm p interactions are presented in the region of photon virtualities 27GeV, E_T2>5GeV, and pseudorapidities -2.5 < eta_1^*, eta_2^* <0. The measurements are made in the gamma^* p centre-of-mass frame, using an integrated luminosity of 57pb^-1. The data are compared with NLO QCD calculations and LO Monte Carlo programs with and without a resolved virtual photon contribution. NLO QCD calculations fail to describe the region of low Q^2 and low jet transverse energies, in contrast to a LO Monte Carlo generator which includes direct and resolved photon interactions with both transversely and longitudinally polarised photons. Initial and final state parton showers are tested as a mechanism for including higher order QCD effects in low E_T jet production.
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
Triple differential dijet cross sections as a function of Q**2, ET and X(C=GAMMA).
We report the first inclusive photon measurements about mid-rapidity (|y|<0.5) from Au+Au collisions at sqrt(s_{NN}) = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of Delta(E)/E = 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (pt) spectra of pi0 mesons about mid-rapidity (|y|<1) via the pi0 -> photon photon decay channel. The fractional contribution of the pi0 -> photon photon decay to the inclusive photon spectrum decreases by 20% +/- 5% between pt = 1.65 GeV/c and pt = 2.4 GeV/c in the most central events, indicating that relative to pi0 -> photon photon decay the contribution of other photon sources is substantially increasing.
Data for the electron-positron invariant mass plots
dE/dx deviant distributions of positive daughters
Data for the number of reconstructed photon conversions as a function of conversion location plots
Bose-Einstein correlations of identically charged pion pairs were measured by the PHENIX experiment at mid-rapidity in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV. The Bertsch-Pratt radius parameters were determined as a function of the transverse momentum of the pair and as a function of the centrality of the collision. Using the \it{full} Coulomb correction, the ratio $R_{\rm out}/R_{\rm side}$ is smaller than unity for $
Panel (a) and (b) show one-dimensional correlation functions for $\pi^+\pi^+$ and $\pi^-\pi^-$. The bottom figures show the three-dimensional correlation function for $\pi^-\pi^-$ with the full Coulomb (open circle) and without Coulomb (filled triangle) corrections for 0.2 < $k_T$ < 2.0 GeV/$c$ for 0-30% centrality. The projection of the 3-D correlation functions are averaged over the lowest 40 MeV in the orthogonal directions. The error bars are statistical only. The lines overlaid on the open circles (filled triangles) correspond to fits to Eq. 1 (Eq. 2) over the entire distribution. Panel (c) shows the one-dimensional correlation function of unlike-signed pions for 0.2 < $k_T$ < 2.0 GeV/$c$. The two overlaid histograms show calculations for the full (dashed) and the 50% partial (solid) Coulomb corrections. $<k_T>$ ~ 0.45 ($\pm$0.17) GeV/$c$ and $<N_{part}>$ ~ 281 ($\pm$4).
The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.
The $k_T$ dependence of the Bertsch-Pratt radius parameters and $\lambda$ for charged pions for 0-30% centrality. Filled triangles show the results from fits to a core-halo structure by Eq. 2, with statistical error bars and systematic error bands. Open circles and squares show the results from the full (Eq. 1) and 50% partial (Eq. 3) Coulomb corrections with statistical error bars, respectively. Results at 130 GeV by PHENIX are given by filled circles.
The QED processes e^+ e^- -> e^+ e^- \mu^+ \mu^- and e^+ e^- -> e^+ e^- \tau^+ \tau^- are studied with the L3 detector at LEP using an untagged data sample collected at centre-of-mass energies 161 GeV < sqrt{s} < 209 GeV. The tau-pairs are observed through the associated decay of one tau into e\nu\nu and the other into \pi\pi\nu . The cross sections are measured as a function of sqrt{s}. For muon pairs, the cross section of the \gamma\gamma -> \mu^+\mu^- process is also measured as a function of the two-photon centre-of-mass energy for 3 GeV < W_{\gamma\gamma} < 40 GeV. Good agreement is found between these measurements and the O(\alpha^4) QED expectations. In addition, limits on the anomalous magnetic and electric dipole moments of the tau lepton are extracted.
Cross sections for muon-pair production as a function of centre of mass energy.
Cross sections for tau-pair production as a function of centre of mass energy.
Cross sections for the process GAMMA GAMMA --> MU+ MU- as a function of W.
The cross section for anti-deuteron photoproduction is measured at HERA at a mean centre-of-mass energy of W_{\gamma p} = 200 GeV in the range 0.2 < p_T/M < 0.7 and |y| < 0.4, where M, p_T and y are the mass, transverse momentum and rapidity in the laboratory frame of the anti-deuteron, respectively. The numbers of anti-deuterons per event are found to be similar in photoproduction to those in central proton-proton collisions at the CERN ISR but much lower than those in central Au-Au collisions at RHIC. The coalescence parameter B_2, which characterizes the likelihood of anti-deuteron production, is measured in photoproduction to be 0.010 \pm 0.002 \pm 0.001, which is much higher than in Au-Au collisions at a similar nucleon-nucleon centre-of-mass energy. No significant production of particles heavier than deuterons is observed and upper limits are set on the photoproduction cross sections for such particles.
The measured value of the invariant DEUTBAR production cross section. The data are normalized to a total photoproduction cross section of (164 +- 11 MUB).
The measured and weak decay corrected values of the DEUTBAR to PBAR cross sections.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.