Differential cross sections for elastic scattering of negative kaons on protons are presented for 13 incident laboratory momenta between 1094 MeV/c and 1377 MeV/c. The data show the characteristic forward diffraction-like peak and backward dip and are adequately described in shape by certain published partial-wave analyses of the N system.
No description provided.
No description provided.
No description provided.
Differential cross sections for the elastic scattering of negative kaons on protons are presented for 19 momenta between 1.732 GeV/ c and 2.466 GeV/ c . The general features of the cross sections are discussed.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative pions on protons are presented for 16 momenta between 996 MeV/ c and 1342 MeV/ c . The cross sections are compared with the predictions from published phase-shift analyses.
No description provided.
Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.
No description provided.
No description provided.
No description provided.
Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.
No description provided.
No description provided.
SLOPE REFERS TO EXPONENTIAL FIT IN U.
The results of a study of the reaction π-p→π-π-π+p at2 147 GeV/c carried out at the Fermilab Proportional Wire 30″ Bubble Chamber Hybrid Spectrometer are reported. More than 92% of the cross-section ((670±41) μb) for this reaction is contained in those for proton and pion diffraction dissociation. The cross-sections for pion diffraction events with three-pion invariant mass in given regions are in agreement with values obtained by extrapolation of fits to data at lower incidentpion momenta. ρ0π- events make an important contribution in the A1 and A2 mass regions, and the data are consistent with contributions from f0π- in the A3 mass region. The cross-section for proton diffraction events is in agreement with a smooth extrapolation of the data at lower momentum.
No description provided.
Pseudorapidity gap distributions in proton-proton collisions at sqrt(s) = 7 TeV are studied using a minimum bias data sample with an integrated luminosity of 7.1 inverse microbarns. Cross sections are measured differentially in terms of Delta eta F, the larger of the pseudorapidity regions extending to the limits of the ATLAS sensitivity, at eta = +/- 4.9, in which no final state particles are produced above a transverse momentum threshold p_T Cut. The measurements span the region 0 < Delta eta F < 8 for 200 < p_T Cut < 800 MeV. At small Delta eta F, the data test the reliability of hadronisation models in describing rapidity and transverse momentum fluctuations in final state particle production. The measurements at larger gap sizes are dominated by contributions from the single diffractive dissociation process (pp -> Xp), enhanced by double dissociation (pp -> XY) where the invariant mass of the lighter of the two dissociation systems satisfies M_Y <~ 7 GeV. The resulting cross section is d sigma / d Delta eta F ~ 1 mb for Delta eta F >~ 3. The large rapidity gap data are used to constrain the value of the pomeron intercept appropriate to triple Regge models of soft diffraction. The cross section integrated over all gap sizes is compared with other LHC inelastic cross section measurements.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 200 MeV in the gap.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 400 MeV in the gap.
The inelastic cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP) for a maximum observed particle transverse momentum of 600 MeV in the gap.
The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .
No description provided.
No description provided.
No description provided.
We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.
Data requested from authors.
No description provided.
Nuclear slopes fixed to world average.
The results presented in this paper were obtained from a 105 000 frame exposure of the FNAL Hybrid Proportional Wire Chamber-30 inch Bubble Chamber System, in a tagged beam of 147 GeV/ c negative particles. Elastic, total and topological cross sections were obtained for both π − p and K − p interactions. Comparisons with other data, taken with various beam particles over large momentum intervals, show good agreement with KNO scaling, and similarity in the scaling behavior of σ n for the different beam particles.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT. THE ERRORS INCLUDE SOME SYSTEMATIC ERRORS.
THE FORWARD CROSS SECTION AGREES WELL WITH THE OPTICAL POINT FROM TOTAL CROSS SECTION MEASUREMENTS.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT.