The high mass μ + μ − pairs produced by 280 GeV μ + on a carbon target are studied in a search for the Y production. The high mass continuum in the region 2–18 GeV is interpreted in terms of QED pair production and of μ pairs originating from the decay of hidden and open charm particles as well as of hadrons ( π , K) from deep inelastic interactions. The upper limit for the upsilon production by muons is found to be, at the 90% confidence level, σ γ ·(γ→μ + μ − )<13·10 −39 cm 2 /nucleon.
.
.
.
We measured the total cross section for p p scattering at √ s = 53 GeV at the CERN ISR. The method was based on the measurement of the total interaction rate and of the ISR luminosity. The result obtained, σ tot = 44.1 ± 2.0 mb, suggests that σ tot ( p p) starts increasing at ISR energies. A measurement of the p p differential cross section was also performed: the results show a change in the slope at | t | ≈ 0.1 GeV 2 , similar to that observed in pp scattering.
No description provided.
No description provided.
Measurements of the energy and t dependence of diffractive Jψ photoproduction are presented. A significant rise in the cross section over the energy range 60-300 GeV is observed. It is found that (30±4)% of the events are inelastic.
No description provided.
Measurements of multihadron production in e+e− annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances ψ(3095) and ψ(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented.
ERRORS ARE STATISTICAL ONLY.
ERRORS INCLUDE SYSTEMATICS.
R WITH SMALLER BINNING AROUND RESONANCE REGION. ERRORS ARE STATISTICAL ONLY.
The results of an experiment to study elasticK+K− photoproduction are presented. Differential cross sections and spin density matrix elements for ϕ(1.019) production are stddied as a function of incident photon energy and over a wide range of momentum transfer,t (tmin>t>−1.5(GeV/c)2). Helicity conserving amplitudes are observed to dominate ϕ production throughout this range and the differential cross sections exhibit a forward diffractive peak which cannot be understood in terms of a simple exponential dependence. A new value of the photon ϕ coupling constant is determined and shown to be consistent withe+e− annihilation measurements. A detailed study of the energy dependence of the differential cross sections is made, including other experimental data, and the extracted effective Regge trajectory compared with other diffractive processes. A study of the dependence of theK+K− decay angular distribution on invariant mass reveals evidence for ans wave contribution interfering with thep wave ϕ which may be attributable to theS* meson.
LOWER LIMIT OF ABS(T) IN TABLE IS TMIN.
No description provided.
LOW T VARIATION WITH ELAB. LOWER LIMIT OF ABS(T) IN TABLE IS TMIN.
None
No description provided.
No description provided.
We investigate the four-photon final state produced in γγ colissions. In the π 0 π 0 channel we observe f(1270) production with predominantly helicity 2 and measure a partial width Γ γγ 2.9 +0.6 −0.4 ± keV (independent of assumptions on the helicity). We observe A 2 (1310) production in the π 0 η channel and find a partial width Γ γγ = 0.77 ± 0.18 ± 0.27 KeV (assuming helicity 2). We give an upper limit for f ≈ ηη .
Data read from graph. Systematic error on M is of order of 2% or less.
Data read from graph.
No description provided.
New measurements of thee + e − → π + π − π + π − cross section have been performed by the magnetic detector DM1 at DCI (ORSAY) in the 1.4−2.18 GeV total energy range with statistics of 11000 events. Assuming the4 π ± production is dominated by the ϱ′(1.6) we determine its parameters: M = 1.57 ± 0.02 (stat.) −0.00 +0.06 (syst.) GeV,Γ = 0.51 ± 0.04 (stat.) −0.01 +0.04 (syst.)GeV,Γ ρ ′ee B ϱ′→ ρ 0 π + π − = 2.67 ± 0.19 (stat.) −0.36 +0.27 (syst.)keV.
No description provided.
The process e + e − → π 0 + anything has been measured at c.m. energies of 14 and 34 GeV for π 0 energies between 0.5 and 4 GeV. The ratio of π 0 to π ± production for π momenta between 0.5 and 1.5 GeV/ c is measured to be 2 σ ( π 0 )/ [ σ ( π + ) + σ ( π − )] = 1.3 ± 0.4 (1.2 ± 0.4) at 14 (34) GeV. The scaled cross section ( s / μ )d σ /d x when compared with lower energy (4.9–7.4 GeV) π 0 data indicates a substantial scaling violation.
COMPARISON OF PI0 WITH CHARGED PION CROSS SECTIONS (SCALED BI 1/S TO SAME ENERGIES).
No description provided.
No description provided.
The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.
Best fit to total cross section in energy range.
ANGULAR DISTRIBUTION.
Forward-backward asymmetry within the acceptnce region.