We are reporting an improved determination of the electroweak mixing angle sin 2 Θ w from the ratio of ν μ e to ν μ e scattering cross sections. The CHARM II detector was exposed to neutrino and antineutrino wide band beams at the 450 GeV CERN SPS. Including new data collected in 1989 we have obtained 1316 ± 56 ν μ e and 1453 ± 62 ν μ e events. From the ratio of the visible cross sections we determined sin 2 Θ 0 =0.239 ± 0.009(stat) ± 0.007(syst) without radiative corrections and g V e g A e =0.047 ± 0.046 . Combining this last result with recent results on g A e at LEP we obtain g V e = −0.023 ± 0.023.
Systematic error presented includes error from flux normalization 'F'=1.030+- 0.022, no detaled description of the other sources and of the combination pr ocedure.. 'F'.
Without radiative corrections, systematic error combined in quadrature fromconponents listed under SYSTEMATICS.
With radiative corrections as defined by Marciano-Sirlin scheme, see Phys.Rev.D22(1980)2695, Phys.Rev.Lett.46(1981)163, Phys.Rev.D29(1984)945, Phys.Rev.D31(1985)213E, Nucl.Phys.B217(1983)84. CENTRAL VALUE IS FOR M(TOP)=100 GEV, M(HIGGS)=100 GEV.
The polarization PΞ− of Ξ− hyperons produced by 800-GeV protons has been measured for xF from 0.3 to 0.7 and pT from 0.5 to 1.5 GeV/c. PΞ− has a pT dependence similar to that of the Λ but has a different xF behavior. Also, an energy dependence of PΞ− has been observed.
1.3 mv production angle was horizontal. Others are vertical.
The first spin-transfer observables for the πd→pp reaction have been measured at a number of energies spanning the Δ resonance in this system. These parameters correspond to KSL and KSS of the pp→dπ reaction for incident proton energies ranging from 600 to 800 MeV. Such data can provide an important constraint on the determination of the partial-wave amplitudes describing this fundamental reaction. The discrepancies between our data, theoretical predictions, and values calculated from published partial-wave amplitudes demonstrate the need for further work in this area.
No description provided.
No description provided.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004
No description provided.
We discuss how the spatial intermittency of energy dissipation in 3D fully developed turbulence affects the small-scale statistics of passive scalars. We relate the passive-scalar behaviour to the diffusion properties of particle pairs in turbulent fluids. We thus find the intermittency correction to the -5/3 Obukhov-Corrsin law for the power spectrum of a passive scalar at wavenumber k where molecular diffusion and viscosity play a negligible role (inertial convective subrange). This correction is positive at difference with the negative correction to the -5/3 Kolmogorov law for the energy spectrum. We finally show that the structure functions of passive scalars have scaling exponents linear in the moment order, even in the framework of multifractal models.
'1'.
'2'.
No description provided.
We report on a systematic study of midrapidity transverse energy production and forward energy flow in interactions of16O and32S projectiles with S, Cu, Ag and Au targets at 60 and 200 GeV/nucleon. The variation of the shape of theET distributions with target and projectile mass can be understood from collision geometry. AverageET values determined for central collisions show an increasing stopping power for heavier target nuclei. A higher relative stopping is observed at 60 GeV/nucleon than at 200 GeV/nucleon. Bjorken estimates of the energy density reach approximately 3 GeV/fm3 in highET events at 200 GeV/nucleon with16O and32S projectiles. The systematics of the data and the shapes ofET and pseudorapidity distributions are well described by the Lund model Fritiof.
No description provided.
No description provided.
No description provided.
A measurement of the QCD jet-broadening parameter 〈QT〉 is described for high-ET jet data in the central calorimeter of the Collider Detector at Fermilab. As an alternate approach to clustering analysis, this method involves the use of a global event parameter which is free from the ambiguities associated with the definition and separation of individual clusters. The parameter QT is defined as the scalar sum of the transverse momentum perpendicular to the transverse thrust axis. Parton-level QCD predictions are made for 〈QT〉 as a function of ET, the total transverse energy in the events, and suggest that a measurement would show a dependence on the running of the strong coupling constant αs. Comparisons are made to first-order QCD parton-level calculations, as well as to fully evolved and hadronized leading-log simulations. The data are well described by the QCD predictions.
A small asymmetry in the systematic uncertainty has been ignored. Given here are the average values.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
We present preliminary results on the measurement of a variety of exclusive hadron interactions at center of mass scattering angles of 90°. Data are also presented which show the relative transparency of nuclei to πp and pp elastic scattering in this kinematic range.
No description provided.
No description provided.
No description provided.
This paper presents and contrasts features of the inelastic nuclear reactions of 200 GeV/nucleon 16 O and 32 S ions with emulsion nuclei. Both the multiplicities of shower particles and the extent of target fragmentation have been studied for varying degress of disruption of the projectile nuclei. The results may be interpreted within a simple geometrical model. In particular the rapidity distributions of those events which exhibit complete projectile break-up without any overt sign of low-energy target fragmentation have been determined. The interaction of secondary projectile fragments of charge two or more issuing from oxygen interactions were also studied and the mean free paths in emulsion of the primary 16 O and 32 S ions and all such fragments have been compared to those predicted by a simple Glauber model.
No description provided.
No description provided.
No description provided.