Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.
Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.
With the STAR experiment at the BNL Relativisic Heavy Ion Collider, we characterize $\sqrt{s_\mathrm{NN}}$ = 200 GeV p+Au collisions by event activity (EA) measured within the pseudorapidity range $eta$$in$ [-5, -3.4] in the Au-going direction and report correlations between this EA and hard- and soft- scale particle production at midrapidity ($\eta$$\in$ [-1, 1]). At the soft scale, charged particle production in low-EA p+Au collisions is comparable to that in p+p collisions and increases monotonically with increasing EA. At the hard scale, we report measurements of high transverse momentum (pT) jets in events of different EAs. In contrast with the soft particle production, high-pT particle production and EA are found to be inversely related. To investigate whether this is a signal of jet quenching in high-EA events, we also report ratios of pT imbalance and azimuthal separation of dijets in high- and low-EA events. Within our measurement precision, no significant differences are observed, disfavoring the presence of jet quenching in the highest 30% EA p+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 200 GeV.
Distributions of Event Activity (as measured by the BBC) from MB and HT events with the latter satisfying an offline trigger of $E_\mathrm{T}^\mathrm{trig}>4 \mathrm{GeV}$.
Density of charged particles with $p_\mathrm{T}>0.2$ GeV/$c$ and $|\eta|\le0.9$ in ten ranges of EA for MB events and HT events selected with several offline trigger values.
Charged particle density as a function of EA, UE $\eta$, and $p_\mathrm{T,jet}^\mathrm{lead}$ for HT ($E_\mathrm{T}^\mathrm{trig}>4$ GeV) events with $p_\mathrm{T,jet}^\mathrm{raw,lead}>4~\mathrm{GeV}/c$.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Data from Figure 2, panel a, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel a, U+U, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel b, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c
For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, with an expected $15\%$ difference in their squared magnetic fields.
Figure 1a, upper panel, full-event
Figure 1a, lower panel, full-event
Figure 1b, upper panel, subevent
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
The chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR collaboration has previously presented the results of a blind analysis of isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) in the search for the CME. The isobar ratio ($Y$) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this post-blind analysis, we estimate the contributions from those nonflow correlations as a background baseline to $Y$, utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at $\sqrt{s_{\rm NN}}=200$ GeV.
Figure 1a
Figure 1b
Figure 1c
The STAR Collaboration presents measurements of the semi-inclusive distribution of charged-particle jets recoiling from energetic direct-photon ($\gamma_{\rm dir}$) and neutral-pion ($\pi^{0}$) triggers in p+p and central Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ GeV over a broad kinematic range, for jet resolution parameters $R$=0.2 and 0.5. Medium-induced jet yield suppression is observed to be larger for $R$=0.2 than for 0.5, reflecting the angular range of jet energy redistribution due to quenching. The predictions of model calculations incorporating jet quenching are not fully consistent with the observations. These results provide new insight into the physical origins of jet quenching.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.5 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.
I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of pi^{0}+jet with E_{T,trig}= 11-15 GeV.
The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Non-central collisions can produce strong magnetic fields on the order of $10^{18}$ Gauss, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and anti-quarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as $v_1(\mathsf{y})$. Here we present the charge-dependent measurements of $dv_1/d\mathsf{y}$ near midrapidities for $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ in Au+Au and isobar ($_{44}^{96}$Ru+$_{44}^{96}$Ru and $_{40}^{96}$Zr+$_{40}^{96}$Zr) collisions at $\sqrt{s_{\rm NN}}=$ 200 GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the $v_1$ signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the $u$ and $d$ quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 200 GeV 50-80% centrality.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Zr+Zr and Ru+Ru 200 GeV (combined) 50-80% centrality.
Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 27 GeV 50-80% centrality.
We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 0-20%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 20-40%).
$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$7.7 GeV (Multiplicity class 40-60%).