We have measured ep, eπ+, and eπ− coincidences for scattered electrons in the range Q2=0.4 to 2.2 GeV2 and W=2 to 4 GeV. We find (a) that vector-meson production decreases with Q2 more rapidly than does the total virtual-photon-plus-proton cross section, more rapidly even than the prediction of simple vector dominance, (b) that the slope of the t distribution in ρ and ω production becomes flatter with increasing Q2 and seems to be at least approximately a function of the single variable xρ=(Q2+mρ2)2Mν, (c) that the fraction of final states containing a proton decreases with increasing Q2, (d) that in the central region of longitudinal momenta the inclusive π+ yield seems to increase relative to the π− yield as Q2 increases, and (e) that the average transverse momentum of π− is greater than of π+ in the central region of longitudinal momenta.
No description provided.
The data with (C=Q=RHO+OMEGA) are obtained by excluding the contribution from RHO and OMEGA production.
No description provided.
Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.
No description provided.
Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.
No description provided.
No description provided.
No description provided.
The reactions of positive pions with protons yielding four charged particles and one or more neutrals have been studied, especially the reaction π+p→Δ++ω0→pπ+π+π−π0. The results presented in this paper were obtained from a 100 000-picture exposure of the Argonne-MURA 30-in. liquid hydrogen bubble chamber, with a beam of incident pions of 4.09−GeVc momentum. Comparisons have been made with corresponding results of other experiments at various incident beam momenta, and with the predictions of some theoretical models of the π+p interaction.
INCLUDING CORRECTIONS FOR BACKGROUND.
No description provided.
No description provided.
The experimental upper limit for the diffractive photoproduction of the ψ(3105) is 29 nb, with 90% confidence, at an average photon energy of 18.2 GeV.
No description provided.
Measurements of the differential cross sections for π−d elastic scattering in the backward angular region are presented. These measurements were made at thirteen incident-pion momenta ranging from 496 to 1050 MeV/c, over the center-of-mass angular range 148° to 177°. The experiment was performed at the LBL Bevatron. Experimental apparatus consisted of a liquid deuterium target and a double-arm spectrometer which included scintillation-counter hodoscopes. Center-of-mass differential cross sections were found to be generally smooth over the angular range covered and can be fitted with low-order polynomials. The extrapolated differential cross sections at 180° scattering angle were found to decrease rapidly with increasing momentum, with a prominent peak near 700 MeV/c and a shoulder near 900 MeV/c. These data are discussed in terms of existing models employing "d*" structures, and are compared with other similar measurements.
.
.
.
The amplitude and phase for coherent regeneration in hydrogen and deuterium have been measured for six momentum bins in the range 3.5-10.5 GeV/c. Over this region the phase, ϕf, is consistent with being constant and has the value - 60°±8° for hydrogen and - 46°±8° for deuterium. Power-law fits of the form plabn for the amplitudes when combined with other data give n=−0.60±0.02 for hydrogen and n=−0.52±0.02 for deuterium.
No description provided.
NOTE PHASE IS HERE DEFINED AS THE PHASE OF I*AMP(NAME=REGEN) AND SO DIFFERS BY 90 DEG FROM USUAL DEFINITION.
Using new data from 100 GeV c π − interactions, we find the energy dependence of the invariant cross-section in the target fragmentation (central) region to be consistent with an A + Bs − 1 2 (C + Ds − 1 4 ) behavior. The leading particle peak near x = + 1 exhibits a width in x which becomes smaller with increasing energy and an integrated cross section which is approximately energy independent.
No description provided.
We present results from a study of high-momentum inclusive hadron production in electron-positron interactions at s=3.8 and 4.8 GeV. Comparison of the momentum spectra at these energies shows no scaling violation in the region x(=EEbeam)>0.7. At s=4.8 GeV the Kπ ratio for hadrons with momenta >1.1 GeV/c is 0.27±0.08, and the average number of charged hadrons is 3.6±0.3 for those events which have at least one charged hadron with momentum greater than 1.1 GeV/c.
No description provided.