The differential cross-section for π − d elastic scattering has been measured at 9.0, 13.0, and 15.2 GeV/ c for t -values up to 2.3 GeV 2 . The results are analysed by comparison with the Glauber scattering model.
No description provided.
No description provided.
No description provided.
Compton scattering on protons has been measured at a mean photon energy of 6 GeV and four-momentum transfers − t between 0.06 and 0.60 (GeV/ c ) 2 . The differential cross section shows a diffraction-like behaviour. The cross section extrapolated to t =0 is in fair agreement with the optical point. Discrepancies with the vector meson dominance model are pointed out.
No description provided.
A systematic search for exotic states produced in K − d interactions at 3 GeV/ c is reported. From the analysis of the mass spectra of strange mesons, non-strange mesons, hyperons with S = −1 and S = −2, upper limits for the production cross sections of exotic resonances may be placed at one or two orders of magnitude smaller than for the production of normal resonances of same strangeness and baryon number.
No description provided.
Elastic and inelastic K L S regenerative scattering on copper and lead nuclei have been observed up to a momentum transfer of 0.17 GeV/ c . The elastic differential cross-section is of a ”diffractive” type. It can be described successfully in terms of an optical model only assuming an appreciable neutron excess in the vicinity of the nuclear surface.
No description provided.
No description provided.
The differential cross-section for pd elastic scattering has been measured at 9.7, 12.8 and 15.8 GeV/ c for t -values up to −2 GeV 2 . The Glauber multiple scattering model has been used to analyse the data, the main interest being the double scattering region.
No description provided.
No description provided.
No description provided.
We have measured the e + e − → ø reaction by its K + K − decay mode. Using our previous results on K O K O and the 3π decay mode of the ø mesons, we compute Γ ø → e + e − and then compare the whole Orsay results to theoretical predictions.
FITTED CROSS SECTIONS AT PHI PEAK. ONLY PHI --> K+ K- MEASURED HERE - ANALYSIS USES PREVIOUS EXPERIMENTS FOR OTHER CHANNELS: J.E. AUGUSTIN ET AL., PL 28B, 517 (1969).
EXCITATION OF K+ K- CHANNEL MEASURED AROUND PHI RESONANCE AT 13 ENERGIES.
Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.
No description provided.
No description provided.
No description provided.
The interference between K L → π + π - and K S → π + π - behind a copper regenerator has been observed in a high statistics experiment. The modulus and the argument of the complex ratio ϱ ( p )/ η +- , where ϱ ( p ) is the regeneration amplitude and η +- = A ( K L → π + π - )/ A (K S → π + π - ) has been measured over the momentum interval from 2.0 GeV/ c to 6.0 GeV/ c . The phase of η +- as deduced from this measurement and from the optical model value of arg [ ϱ ( p )] is 49.3° ± 6.8°. The K L K S mass difference has been found to be Δm/ h ̵ = (0.555 ± 0.020) × 10 10 sec −1 .
No description provided.
Photoproduction of resonances has been studied using positron annihilation radiation at 5.25 GeV in the SLAC 40-inch hydrogen bubble chamber. Results are presented on the nonstrange particle events and related to the vector dominance model.
No description provided.
Elastic scattering and single-pion production in pp collisions at 6.92 BeVc were studied in the BNL 80-in. hydrogen bubble chamber. Partial cross sections for the different final states are given. The reaction pp→nN1238*(pπ+) with σ=1.9±0.3 mb is analyzed and is in agreement with the modified one-pion-exchange model. Single-pion production can be explained as due mainly to two channels: (a) pp→N1238*(pπ+)n, and (b) pp→p(nπ+) or pp→p(pπ0), where the (nπ+) and (pπ0) pairs are in an I=12 state.
No description provided.
No description provided.
No description provided.