The p p → n n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up to 0.8 (GeV/ c ) 2 . A small and negative polarization has been found.
ERRORS INCLUDE STATISTICAL AS WELL AS RELATIVELY SMALL SYSTEMATIC EFFECTS.
In a counter and wire spark chamber experiment with a polarized target, backward kaons were detected, and the Σ + 's identified by a missing-mass technique. An average polarization of −0.08 ± 0.05 was found for −0.2 < u < 0.1 GeV 2 .
THE MEAN POLARIZATION FOR ALL EVENTS IS -0.08 +- 0.05.
We present the first results of a measurement of the total cross-section σ T in proton-proton collisions at equivalent laboratory momenta between 291 and 1480 GeV/ c at the CERN Intersecting Storage Rings (ISR). The method is based on the measurement of the ratio of the total interaction rate and the machine luminosity. The data show an increase of about 10% in σ T in this energy interval.
No description provided.
Production and decay characteristics of electroproduced rho mesons were studied in the final state epπ + π − .
No description provided.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
The electroproduction of a π-meson and of a Δ(1236) nucleon resonance on hydrogen, ep → e πΔ (1236), was investigated in the two charge states π − Δ ++ and π + Δ 0 by measuring the scattered lepton and the produced π-meson in coincidence. The differential cross sections as funcions of W , q 2 , t − t min and ø πq were determine in the following kinematical region: w = (π + δ) 2 = 2.0 − 3.0 GeV , |q 2 | = |(e−e′) 2 | = 0.15 − 0.8 GeV 2 /c 2 , |t − t min | = 0-0.5 GeV 2 /c 2 with t = ( p − δ) 2 , φ πq = 0 − 360° .
W-DEPENDENCE FOR 4.0 GEV INCIDENT POSITRONS.
W-DEPENDENCE FOR 4.9 GEV INCIDENT POSITRONS.
W-DEPENDENCE FOR 5.4 GEV INCIDENT POSITRONS.
The reaction K − p → X K − p has been measured at 25 and 40 GeV/ c at the Serpukhov accelerator using the CERN-IHEP boson spectrometer. At both energies we observe production of the resonances K ∗− (890) and K ∗− (1420) in the channels K ∗− → K 0 π − and K − π 0 ; the momentum dependence of their production cross sections is found to be σ[ K ∗− (890)] ∞ p inc −1.48±0.04 and σ [ K ∗− (1420)] ∞ p inc −0.8±0.2 .
No description provided.
No description provided.
No description provided.
In an experiment with the CERN 2m deuterium bubble chamber the reaction K + d→K o pp (1) and the related reaction K + n→K o p (2) are studied at an incident momentum of 4.6 GeV/ c . The cross section for the latter reaction is found to be slightly larger than the cross section for the reaction K − p → K o n at the same energy. The corresponding differential cross sections agree within the rather large uncertainties. The forward amplitude for reaction (2) is predominantly real. Moreover, the total and forward differential charge exchange cross section values are compatible with those predicted on the basis of an SU (3) sum rule. A comparison of the K ± -charge exchange differential cross sections with the predictions of a Regge pole model is also presented.
No description provided.
SMALL -T DEUTERIUM CORRECTION APPLIED USING MC GEE WAVE FUNCTION (PAPER ALSO GIVES UNCORRECTED AND HULTHEN CORRECTED DATA).
Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.
No description provided.
We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .
REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.